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Phase field models for step flow
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The relation between phase field and discontinuous models for crystal steps is analyzed. Different formula-
tions of the kinetic boundary conditions of the discontinuous model are first presented. We sh@yvstest
transparency, usually interpreted as the possibility for adatoms to jump through steps, may be seen as a
modification of the equilibrium concentration engendered by step mdfiohe interface definitiori.e., the
position of the dividing ling intervenes in the expression of the kinetic coefficients only in the case of fast
attachment kineticdiii) We also identify the thermodynamically consistent reference state for kinetic bound-
ary conditions. Asymptotic expansions of the phase field models in the limit where the interface width is small,
lead to various discontinuous mode($) A phase field model with one global concentration field and variable
mobility is shown to lead to a discontinuous model with fast step kinef®sA phase field model with one
concentration field per terrace allows one to recover arbitrary step kin@gcsarbitrarily strong Ehrlich-
Schwoebel effect and step transparen&uantitative agreement is found, in both the linear and nonlinear
regimes, between the numerical solution of the phase field models and the analytical solution of the discon-
tinuous model.
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I. INTRODUCTION (i) The microscopic origin of step transparency is dis-
cussed. It is found that transparency, traditionally related to
From molecular dynamics to the macroscopic continuummotion of mobile atoms through stef#,10], can be seen as
the description of a crystal surface may take a wide varietya modification of the equilibrium concentration engendered
of forms, depending on the range of scales that is used. Aslay step motion. This allows an explicit link with the kinetic
mesoscopic approach at intermediate scales, modeling thmundary conditions used in solidificatipbl].
surface as a collection of crystal steps separated by high (ii) The interface definitiorii.e., the arbitrary position of
symmetry terraces is a powerful tool for studying surfacethe dividing line which allows to calculate interface excess
statics and dynamidsl]. guantitieg intervenes in the expression of the kinetic coeffi-
Progress in the understanding of nonequilibrium surfaceients only in the case of fast attachment kinetics. But the
dynamics has been achieved. Still, many questions remaimodel is still well defined in this limit as opposed to previous
open such as the precise link between microscopic atom mavork in the literaturg12].
tion and step kineticf2], steps dynamics out of the weakly  (iii) Using the correspondence to phase field models, we
unstable regimel3,4], or in complex geometrid®,6]. Steps  identify the reference state for the boundary conditions
dynamics is nonlinear and nonlocal in time and space—awhich is consistent with thermodynamics.
can be seen explicitly by means of a Green’s function for- For the first time to the best of our knowledge, the step
malism[7,8]. Nonlocality comes from the coupling of steps velocity and the linear dispersion relation for a vicinal sur-
via the diffusion of adatoms on terraces. Nonlinearities ariséace are calculated from the discontinuous model in the non-
from step geometry, but also from the fact that steps are frequasistatic case with general step kinetics and in the presence
moving boundaries. of adatom deposition and desorption, including both step me-
In the phase field approach, the interfatiee step is a  andering and step bunching.
region of fast but continuous variation of an order parameter We then present two phase field models. Within different
(or phase fiell Phase field models can be seen as an intertypes of asymptotics, the phase field models are shown to
mediate description between molecular dynamics and stefead to different discontinuous models. Despite the lengthy
dynamics, opening new ways for a quantitative link throughalgebra of the asymptotic expansions, an overall simple
the length scales. Since they do not require an explicit trackphysical picture arises that connects the length scales.
ing of the fronts, phase field models also simplify the nu- A phase field model with one concentration field is first
merical computation of steps dynamics. presented in Sec. lll. The so-callstiarp[13] andthin [14]
Several studies were already devoted to the phase fielidterface asymptoticare performed. They lead to discon-
formulation of steps dynamid$,7]. In this paper, we focus tinuous models with strong transparency and fast attachment
on a comprehensive and quantitative description of step kikinetics, respectively. The numerical solution of the two-
netics. dimensional(2D) phase field model is shown to be in quan-
We first present a discontinuous model for steps with gentitative agreement with the discontinuous model.
eral kinetics. Some discussion and rewriting of the boundary Nevertheless, this phase field model cannot account for
conditions are presented. These alternative formulations corslow kinetics that may lead to a finite concentration jump at
tain some interesting hints about the physical interpretatiothe step(e.g., strong Ehrlich-Schwoebel effect observed on
of step kinetics. metal surfacegl5] leads to a finite jump of the concentration
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Then one has&F/8¢)="y«, wherex is the step curvature
and y=y+19" is the step stiffness. We then defifde
=Q0y/kgT such that

Coq=Ceq(1+Tx). (4)

There are three mass fluxes at the step: the diffusion
fluxes J.. and the quantity of matter transformed from 2D
gas to solid denoted by;,

o ) ) _ J.=—(Dd,c++Vco), (5)
FIG. 1. A vicinal surface with microscopic transport processes.
. . 1
at the step during growihin order to solve this problem, we Jszﬁv, (6)

propose a model with one concentration field on each terrace

in Sec. V1. This mod'el allows a finite cpnqentraﬂon jump atwhereV is the normal step velocity, @ is the solid concen-

the step. The sharp interface asymptotics is shown to lead Fation, andg,=n-V is the derivative in the direction normal

a step model with arbitraryi.e., not necessarily fasstep o the ,ste rlI'he are related through global mass conserva-

kinetics. The numerical solution of the 2D phase field modelt. h P- y hich i ) g+Jg ~3

is in quantitative agreement with the analytical solution oftlon atthe step, which is written a+J_=J., or

the discontinuous model on at least five orders of magnitude

of variation of the kinetic coefficients. —V=(-Dd,c_.—Vc_)+(Da,c,+Vc,). )
Finally, the nonlinear dynamics of an isolated step during Q

growth is studied. The numerical result of the phase ﬁeldThus, only two of the three fluxes are independent, and

model is in agreement with the multiscale analysis of thegp, 4 pe'related to the thermodynamic forces using linear
discontinuous moddR3].

phenomenological laws. The kinetic boundary conditions are

then written as
II. DISCONTINUOUS MODEL

A. Model equations ~(e I =l XL X,
In the discontinuous modgbteps are lines that define the (J_—=J)=L__X_+L_,X,. (8)

boundary of three phases: a solid phase, and two gaseous

two-dimensional adatom phases on the neighboring terrace$he second term on the left hand sidles) is the flux in the

one behind and one in front of the step. On a terrace, magéference state for a referential moving at a velodity

conservation is written as an evolution equation for the ada-

tom concentratiort: Jr=Veegx- 9

a,c=DVZc+F—clr, (1)  Two cases are considered: adatom vacyombare terrace
reference statg =0 and equilibrium reference staje=1.
where g, indicates the derivative with respect to time. As From the link to the phase field models, we will argue in the
shown in Fig. 1F is the rate at which atoms are adsorbed onfollowing that y=1 is the only thermodynamically consis-
terracegfrom a molecular beam or a three-dimensiof@))  tent model. From Onsager reciprocity relatidns, =L, _
gas phasg D is the diffusion constant of adatoms on terraces= — vy. We then definev, =L, , —vyandv_=L__—v,.
andr is the adatom desorption time. At a step, there are twdrelations(8) are now written as
independent thermodynamic forces:
—(J+—=J)= V+(C+_C:q)+ vo(Cy—C-),
Xi:Ct_ng! (2)
o , (J-=J)=v_(c_—ci)+w(c_—c.), (10
where = refers to the diffusion fields in front of and behind
the step. The local equilibrium concentratic@q depends on v. are related to mass exchange betweemand — adatom
the free energy of the steps Using a linear thermodynam- phases and the solidg was introduced first in Ref10], and
ics picture(linearized Gibbs-Thomson relatipnve have, in  describes “direct” exchange between terraces, this phenom-
the vicinity of a step of meande, ena is called step transparency. The different kinetic pro-
0 s cesses at the step are depicted in Fig. 1. One then has

et 5z ) ®

* _
Caq=Ceq

Vv
5=u+(c+—c§q)+ v_(C—Cqy- (11

wherecgq is the equilibrium concentration in the vicinity of
a straight step. Her&= [dsy is the free energy of the step, Interestingly, this relation shows that the tekie.. —Vceqx
where s is the step arclength ang is the line tension. on the lhs of Eq(10) is second order in the departure from
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equilibrium (c—c;q) when y=1. Similarly, the termV(c, Vv

—¢_)~(c—Ceq)? On the right-hand sidérhs) of Eq. (7). In ~(Js—d)=agtwrici—c),

a linearized picture, these terms can be neglected, Jand

—J,~—Dd,cC. \V;
(J,—Jr)z(l—a)§+v(c,—c+), (18

B. Discussion of the boundary conditions

wherea measures the kinetic asymmetry of the stefs the

global-exchange kinetic coefficient between terraces, natu-
Equations(1), (7), and (10) [with Eq. (3)] describe the rally arises from the solution of the discontinuous mogeke

deterministic dynamics of a set of steps as long as step nucléppendix E and Ref{17]). A third equation, equivalent to

ation or collision does not occur. This formulation allows oneEg. (11), relates the velocity to an asymmetric thermody-

to interpretvy as a kinetic coefficient for mass exchange namic force:

between terraces. But linear combinations of E@$.and v o1

(10) lead to alternative and equivalent sets of boundary con- _ A _ A%

ditions. As a first example, kinetic laws at the step may also E_E[a(c* Ceq) (1= a)(C-—Ceq)], (19

be written as

1. Step transparency and link to solidification

where g is a kinetic coefficient having the dimension of the
inverse of a velocity. The new kinetic coefficients can be

~ (e 7 I = v (e = Ceg), related to the previous ones via

(J-=J)=v_(C_—Cey), (12) v=vo+(v; +r H 7L (20)
where we have defined . v, , 2
vytuv_
~ ~V
Coq= Ceq(l'f'FK)'f'Bﬁ, (13 1
p= vy+tv_ (22)

and the kinetic coefficients
C. Step dynamics on a vicinal surface

vi=vitvo(ltw,lvo), (14) A vicinal surface is a(staircaselikg surface where all
steps have the same orientation. During growth or sublima-
Vo=v_+vy(ltv_lv,), (15)  tion, there exists a steady state for a vicinal surface with
equidistant and straight steps, where all steps have the same
-1 velocity. This is the step flow growth mode. Since it is free of

~ (V+V_

(16) nucleation events, this growth mode is a candidate for the
production of atomically flat surfaces in molecular beam ep-
itaxy. Using Eqs(1), (7), and(10), the steady state concen-

In the limit of opaque stepsp—0), Egs.(10) and(12) are  tration and the step velocity were extracted.

identical. Equation(12) shows that step transparency( In the quasistatic limit, which is widely used in the litera-

#0), usually described as the possibility for direct exchangeure, the |hs of Eq(1) is neglected. Moreover, it is supposed

of atoms between terraces, can equivalently be seen astigat Vc<D|Vc|, so that the diffusion flux isJl~—DVc.

correction of the equilibrium concentration at the step due torhis approximation is not justified when diffusion is slow
step motion[term BV in Eq. (13)]. In the limit v,—%, we  (e.g., at low temperature or for large molecileswhen the
recover boundary conditions similar to that used in solidifi-concentration is high. An implicit expression for the full non-

cation[16] (here, concentration replaces tempergture guasistatic step velocity is given in Appendix E.

During growth, a meandering instability appears in the
_V presence of a normal Ehrlich-Schwoebel effect>»_ and
i =C=Ceq(1+ ')+ - (170 abunching instability in the presence of an inverted Ehrlich-

Schwoebel effecty, <v_. These kinetic instabilities may

be considered as a source of undesired surface roughness. On

the other hand, this spontaneous pattern formation may be
used to produce large scale networks of nanostructures. The
reader interested in an extended discussion of the stability of

a vicinal surface should refer to the literatyr8,19. The

A third equivalent formulation will naturally appear in nonquasistatic linear stability analysis of the model was per-

Sec. IV from the analysis of the phase field model. The firsformed and the dispersion relation is written in Appendix E.

two equations account for global mass conservation at eadfrom this implicit relation, the rate of amplification or decay

side of the step: of a small perturbation is extracted numerically.

+v,t+v_
Vo *

Note that the attachment-detachment asymméiyrlich-
Schwoebel effegtis irrelevant in this limit.

2. Global-exchange boundary conditions
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(@) Fig. 2, which includes a variable mobility of the atoms in the
step region.
C_\ ¢ The first model equation accounts for the evolution of the

adatom coveragé=()c (where(} is the atomic area

0
36=VI[MV 6]+ QF ~ ——ah, (23)

whereM is the nonconstant adatom diffusion constant Bnd
the solid concentration, is defined up to an additive constant.
The second equation is an evolution equation for the phase
field ¢ itself:

Tp i p=W2V2p—Tf 4+ N (0~ 0eg) Ty, (24)

whereW is the interface widthM, h, f, andg are periodic
functions of ¢. The index¢ indicates derivation with re-
spect tog. f is an energy density having minima for values
of ¢ corresponding to terraceg.is a coupling function de-
fined in such a way thag, andg,, both vanish at the
minima of f. This model can be further generalized to ac-
count for a nonconstant equilibrium concentration. Neverthe-
less, this modification does not affect the main conclusions
of the present section, as shown in Appendix A.

In the following, the thin and the sharp interface asymp-
totics will be presented. In both limits, the produxt{é
— 0gg) is small. In the sharp interface asymptotics, the cou-
pling constanf\ is small. This corresponds to a weak cou-
pling limit, i.e., steps are very transparent. In the thin inter-
face limit, the coupling constant is not small, but the
departure from equilibrium at the interfade- 6, is small.
This means that we assume that interface kinetics is fast

FIG. 2. Discontinuous moddghk). Phase field model with one
concentration fieldb) and with one concentration field per terrace S
(c). (Although this schematic is one-dimensional and with only oneenough for to rEIa)_( to a value which is nea}eq. In_ the
step, all models are two-dimensional and the number of steps i@"o‘_’vmg’ we describe both types of asymptotics in more

arbitrary) detail.

B. Thin interface limit
When steps are morphologically unstable, a multiscale

analysis must be performed in order to predict nonlinear dy-
namics at long times. As an example, in the case of an iso- Starting from a phase field model with constant mobility
lated step, Benat al.[3] have shown that the meander obeysM =D, Karma and Rappel14] have presented a form of
the Kuramoto-Sivashinsky equation, which exhibits spa-asymptotics, called the thin interface limit, that accounts for
tiotemporal chaos. step dynamics with instantaneous attachment kinetics.

In the following, we will use these analytical predictions  |n order to extract an effective discontinuous model from
of the discontinuous modéi.e., step velocities, meandering the phase field model with variable mobilitg3) and (24),
and bunching rates, and nonlinear dynamits order to  an asymptotic expansion is performed, following the lines of
check the quantitative agreement between the discontinuoule thin interface limit presented in Ré¢fl4]. Let us define

1. Expansion

and phase fields models. the small parametee=WI/{., where{, is a cutoff length
related to diffusion on terraces. In the following, all distances
Ill. PHASE FIELD COUPLED TO ONE GLOBAL are normalized by, so thate=W. We expect the field)
CONCENTRATION FIELD to stay in minima of the free enerdyin wide areas, which
A Model define terraces. From one terrace to anotlfersmoothly

jumps from one minima to the other. Thus, two regions are
The traditional phase field model is a model with a phaseconsidered, where two different expansions are made. An
field ¢ coupled to a driving field. In the limit where the inner region(the step region where the fields have zeroth-
width of the interface is small, different discontinuous mod-order variations on a distance of ordét An outer region
els have been obtained, depending on the precise asymptoti@erracey where the fields might have zeroth-order varia-
that is used 13]. Some phase field models for steps weretions on a distance of ordéi,. The geometry of the inner
already proposefb,7]. region is imposed by the position of the step, where normal
In this section, we present an extended version of thend arclength variablesands are defined. In the inner re-
phase field model with one concentration field depicted ingion, we define the variableg=r/W and the inner fields
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6" (7,s) and ¢'"(7,s). These fields are expanded as the position of the interface to first order. We have written
_ o " 5 in only the relations that will be needed. Similar matching re-
0"(7,5)= 06y (1,5) + W67 (5,5)+W=65'(7,8)+ - - -, lations hold for¢. The reader should refer to R¢1L3] for a
(25)  derivation of the above matching conditions.
¢"(17,9)= 5 (17,9 WL (7,5) + W5 (7,8)+ - - -. 2. Zeroth order
(26)

The indexin will be omitted in the following. To leading

Model equationg23) and(24) are expanded up to first order order, Eq.(27) reads

in Win the inner region 0

d,[M%a,68,]1=0. (39)

o(W2)=49,[M d,6™]+W(V+Mk)d, 0" +WVa,h,
(W5=d,[M 3,071+ W( Ky K 2 Integrating this equation, one gek, d,,0,=A, a constant.
(27) From the matching conditio(84), we must havé\,=0. As

o(W2)=(9,,,,¢>'”—f¢,+ N0 = 0.q)94stW(Vatk)d,o'", a consequence),= 6, is a constant. To this order, the evo-

(29) lution equation of the phase field E@4) leads to

wherex is the curvature of the step. The step diffusion con- 3y bo— f%“\(;o— 9eq)925:0- (39)
stant

wheref® meansf evaluated atp= ¢,. Equation(39) is eas-
_ Vl (29) ily solved using an analogy with point mechanics in a one-
® dimensional potential¢p and » correspond to position and
time, respectively. The particle of unit mass moves in the

is taken to be~0(1), hencer,~W?. This choice ensures otential — f + A (68— 0 It has to o from a maxima of
that the internal dynamics of the step is fast enough to mainE’h ial ?1 qug. ith 9 hina initial and final
tain a well defined step in nonequilibrium situations. the potential to the other, with vanishing initial and fina

In the outer region, far from steps, the phase figldies \éﬁl)og étlesstc::rz]a %rgta with the matching conditiofdsh). If we
in a (stable minima of the energy densitiy The coverage 9
6°'" then obeys 9% —g% =[g°]* #0, (40)

out

3,6°U'=D V260Ut OF — , (300 theonly _solution is9p= 0eq (for which the maxima have the
T same height and

Q|-
)

which is equivalent to Eq(l). In the vicinity of a step, the 9 ¢O_f%:o. (42)
outer field is expanded as "

This equation has localized “kink solutiongs,, going from

0°"(7,8)= 603" (7,9) + W6 (7,5) + W23 (,9) + - - -, one minima off to the next one. The width of this kink is 1

(31 in » coordinate, which corresponds to a widthin physical

coordinates. By definition, these kinks are the steps.
d)om( 7718) = ¢8m( 7715) +W¢$m( 7718) +W2 gm( 7]13) +oeee

(32 3. First order
Matching of the inner expansion aj—o with the outer The subdominant contribution in the diffusion equation,
expansion at —0 leads to the following conditions: Eq. (27), reads
lim 6= 69", (33 3,LM® 3,611+ V d,40h5=0, (42
n—E®
which leads, after two integratichsvith respect toy, to
i in_
Ilr?wé’ﬂeo _01 (34) 7 hO 7 1
K 61=—VJ dn’ﬁ+A1J dn'—5+By, (43
0 M 0 M
lim 6= 69"+ (— 7)a, 63", 35
o 1= 01+ (n—7)d, 65 (39 where A; and B, are constants. Since li-gn—-]>+00(977779120'
. taking the limit »—c0 in Eq. (43) leads to
lim a,07=d,65%, (36)
n— oo lim 01=Y1+ + 7721+ , (44)
. 77~>+oo
lim 4,,67'=0, (37)
7— o

. Lo o IMatching after only one integration is sufficient to derive mass
where the index*+ on the rhs indicates that the limit conservation, but for the sake of clarity, the complete matching is
Iimr_>O+ was taken.y is an arbitrary constant which defines postponed to later in the derivation.
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whereY,, andZ, ., are constants that depend ApandB;. out oot -1 ,
From the matching conditions, Eq35), we haveY;, (6= —0eq)—&0,60° :WKWJ dn(d,¢0)
= 69"~ 59,63 andz, . =3, 65"". S|m|lar relations may be -

written on the — side: Y;_= Y~ 4,63" and Z,_ —-a
s eaons 1 s o’

=0,63"". Thus, we have four relations.
On the other hand, Eq28) to first order reads
1 (9°—g%)(h°—h?)
- [gO]tJ VD
+DJ 0°“t[—f0 d (i—i)
r0- . n MO D

0

I pyb1— h1f%s=—N0194— (AV+K)d,bo. (45

Differentiating Eq.(41) with respect tor, one finds that
9 b0 is_, a solutiqr_1 of the homogeneous_ part of E4f). The 1 _
solvability condition(Fredholm alternativethus leads to a +—3 +f dy 5
fifth relation: g’] M

(49

These equations are identical to the kinetic boundary condi-
tions, Eqs(12), to leading order in §— 6.4). We then obtain

j d#nd,dol A 9192,+(av+ K)d,$0]=0. (46) a set of equations that relates the parameters of the discon-
tinuous model ¢ , 3,04l to the functions {,g,h,M) of
the phase field model. These relations impose that

With these five equations, we eliminate the two constagts 0 g°
andB; gmd obtain three relations between the quanti$ ho=(1— ) cap —~+h?, (50)
andd, 8, . One of them accounts for global mass conserva- [97]=
tion: . : . .
whereh? is a function of¢, which must satisfy
1 L
V=——+(D 4, 0out D4, aout) (47) f_wdnw=0. (51

[h°]Z

Following the same arguments as in Rgf4], we show in

. ) . Appendix B that Eq(50) corresponds to a variational phase
01+ _ 0 _ 0 _ _

Choosing[h”]==h} —h~=—1, Eq.(7) of the discontinu- a4 model at thermodynamic equilibrium only j=1 and
ous model is retrleved Since it corresponds to a higher ordq{o 0. The model withy=0 does not correspond, in gen-

contribution inW, the termV(6..— ¢_) is absent here. eral to a variational phase field model at equilibrium.
Two other equations account for the kinetic boundary Let us now define the surface excess of a quanlitgs

conditions. Sincedgy'= feq, One haswepy'= 62"~ b, to
leading order. We then find on the S|de é +oo
(Q)e= Jl df(Q—Q)JrL dr(Q-Q4), (52
(6°ut— Oog) — £ gout:WK—)\[ 0]+j d77(&,7¢0)2 whereQ.. Imwin. The general solution then reads
-a R l(°)+Wfd(l 1)(0 0)}
w denw,@o)z S i D@V o p)e= 9D,
el 53
f (9°~¢° ) h%) 1 -11 1
1 = =T |D "¢ )5+Wf dn( 5)(@10—9‘1) ,
D g.6%u" f*‘”d (1 1) (54)
e D B o] (10 B+ a—a®)y [ <a¢>2}
=——(1-x) = a—a*)— ,
1 f go_GT [go]i X D g £ A K 770
+ d , (48)
(Dol 7 Mo (55
9eqrsz d#n(d,b0)°, (56)
where G°=g°% when >0 andG°=g° when <0. We -
have also defineg=W=#. On the— side to first order where
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. AL [ 2 fdn(g‘i—go)(go—g‘i)
- 07+\2 MO
fdﬂ((%,d’o)z“[g )
1 g2+g%\h?
el oS o7

We have obtained fast attachment-detachment kinetics:
~1/M. Since B~W, we also findvy~1MW. Note thatB

vanishes for an appropriate choice afThe terms propor-
tional to a anda* in Eq. (55 come from, respectively, the

finite relaxation time of the phase field and the finite diffu-

PHYSICAL REVIEW &8, 021604 (2003

v.>V,

A 1
£=<

(62

One may then easily check that the kinetic coefficients of
the thin interface limits Eqg53)—(55), obey the transforma-
tion rules, Eqs(59—(61). Indeed, in the frame of the thin
interface asymptotics, conditionri62) are fulfilled: one has

sion constant in the step region. Note that the kinetic coeffiy, . ~D/WsV, Aé~W< 1/|«|, and D/71¢~W<€c- Hence,

cients can be positive or negative.

4. Invariance of the kinetic boundary conditions when changing
the interface reference point

we have shown that the transformation rules obeyed by the
kinetic coefficients obtained from the thin interface limit
leaves the physical behavior of the steps invariant when
changing the step reference poit

Physical observations do not depend on the definition of

the interface positiorg. Nevertheless, kinetic coefficients in
Egs. (53)—(55) explicitly depend oné via surface excess

C. Sharp interface asymptotics

In the sharp interface asymptoti¢43,7], the coupling

quantities §) .. This apparent paradox may be solved whenggnstant is smalk ~W. This leads to the same result as the

looking carefully at the boundary conditions.

Let us first perform a change of the reference point in th
boundary conditions of the discontinuous model. We wan
the concentration profile on the terraces to be invarian
within this change of reference. Therefore, the concentration

at the boundaries must transform as follows:

0= 0@ —A¢£9,6D+0((AE)?), (58)

where indiceg1) and(2) correspond to two different choices
of interface até; or & with &—§&,=A¢&. The first-order
expansion in Eq(598) is valid if A¢é<€., wheref. is a
cutoff related to the diffusion of atom on terradesg., the
distance between steps or the desorption length
=(D 7). In the kinetic boundary conditions of the discon-
tinuous models Eq(12), with referencet;, we perform the

substitution, Eq(58). The obtained relations can be rewritten

in the form of the usual boundary conditions, E(2), with
referenceg,, and with new kinetic coefficients:

t_1 +A§ (59
7@ 3D
1 1 A¢
5@ 50D (60
~ ~ A¢
BP= B+ 5 e 1= x). (61)

Since it is not a kinetic quantityg.,I’ is invariant under

thin interface asymptotics to zeroth order. To first ordar,

g. (46). The resulting boundary condition,

PEas to be replaced b§,— 6.4 in the solvability condition,

N Go]* (Bo— fuq) +W(av + i) f dn(9,d0)?=0, (63)

corresponds to the case of perfect transparency(Ig[an
additional equation for mass conservation can be retrieved
by integrating Eq.(43) only once with respect toy]. It is
important to note that a variable mobility does not affect the
final result. Comparing Eqg17) and (63), one obtains the
following relations:

B:—a—w fdn(ﬂ o) (64)
NCUE e
-W
— 2
Feeq_)\[go]tf d77(‘977¢0) . (65

The attachment kinetic coefficients are not large anymore.
Within the sharp interface asymptotics, attachment kinetics is
finite [i.e., B~0O(1)], and steps are perfectly transparent
vo>v, ,v_.As mentioned in Sec. Il B, the kinetic asymme-
try at steps(Ehrlich-Schwoebel effegtis irrelevant in this
limit.

We also notice the absence of surface definition depen-
dent termgcontaining @),] in the sharp interface asymptot-
ics. These terms now lead to higher order contributions.

D. Domain of validity of the expansions

For the thin interface asymptotics to be valid, four condi-
tions should to be fulfilled14]:

interface redefinition. The conditions under which such a re-

writing is possible are

|k|W<1, (66)
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WV 0.04 T T T
<
5 <L (67)
N(O— O <1, (69)
0.03 | .
Y g (69)
w ' >
Furthermore, one has
0.02 | .
P 70
ViN Wv ( )
-0.15 = o S > @]
107 1 100 10
i.e., attachment kinetics is fast. This is, nevertheless, not the 001 o o ‘
case in many situations of physical intergsb]. In Sec. 1V, ' 10~ 10° 10’ 10°
we will present a simple way to avoid this limitation. d, /W

The results of the sharp interface asymptotics can be re-
trieved by taking the limit\ ~W in the results of the thin
interface asymptotics. One indeed retrieves E#l) from
Eq. (55) in the limit a* ~\~W=a. This condition may be
rewritten as\<D7,/W?, and together with Eq(65), im-
plies thateeqF>Wé7(D7-p) in the sharp interface asymptot-
ics, which is the condition obtained in R¢fL4].

FIG. 3. Step velocity in the absence of Ehrlich-Schwoebel ef-
fect:d_=d. , and without transparenay=0, as a function of the
attachment lengtldl, /W. Relative error on the step velocity as a
function of value of the attachment length /W.

SinceN ~WI/(I"#¢) and 6 — 6~ Bv during growth, con-
ditions (68) and (69) may be combined and read
E. Numerical simulations
Wu

[ 0eq

In this section, the full numerical solution of the 2D phase <1, (71)
field model (23) and (24) is presented. Since it has richer

dynamics, we here focus on the thin interface asymptotics
only. The reader interested in a comparison of the sharp invhere we have used thatr,~W?a*/D~W?\/D

terface asymptotics with a numerical solution of the phase-W?® (DI 6e). The behavior of the velocity when varying

(W
DF

field equations may refer to Rgf20]. I is plotted in Fig. 4. As predicted by E¢71), the conver-
gence to the thin interface asymptotics breaks down when
1. Step velocity condition(71) is not fulfilled anymore.

The velocity of a step in a periodic vicinal train was used The velocity of steps on a vicinal surface as a function of

as a first quantitative check of step kinetics. In order to forcethe d|st§nce betwe_en steps Is plotted_m Fig. 5. Good_agree—
periodicity, one step only is used in a box which is periodicment with the prediction of the sharp interface model is ob-

along the step and screw periodic in the direction perpen§erved'

dicular to steps. We have used the nonperiodic two-wells

phase field model explicitly defined in Appendix QMNe 0.04

have made some checks, with a periodic model, with several

steps. We have also varied the lateral extent of the steps. This

does not change the result¥Ve use the following param- 0.03 |

eters of the step modef)F=102, 7 1=10"% D=1, :

Oeq= 102, I'=1, and the distance between stepd is5.

All results are in dimensionless units, which must be re-

scaled in order to retrieve the physical units. Using A0 0.02 |

and 10 s as spatial and temporal units, this simulation cor-

responds typically to growth of @i11) at high temperature

[21], where significant desorption is present. &
We first usedv,=0 and vary the value of, =d_. For 0-0110'_2 10'_1 160 10

W=0.2, the numerical integration with a simple Euler

scheme was seen to converge fov/dx=4 and dt r

=5x10"% The variation of the relative error on the step  FiG. 4. Convergence of the velocity when varyiigTwo cases

velocity, given the step model, is plotted as a function ofare consideredd=0.1 (squares and d=10 (circles. The value

d.=d_ in Fig. 3. The results confirm conditiof¥0), and  predicted by the thin interface asymptotics is shown in both cases.

show that the error is less than 1% whin/W~1 and less  The convergence criterion of E¢71) readsI'>0.15 andl'>1.0

than 15% wherd . /W~50. whend=0.1 andd=10, respectively.

X 2

10
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FIG. 6. Dispersion relation: growth rate of the meander

FIG. 5. Step velocity in a train of steps with one concentration|R€iw]| as a function of the wave vector. The solid line is the
field. The symbols are results of the numerical solution of the phasquasistatic prediction from the discontinuous model. The squares
field. The solid lines correspond to the nonquasistatic prediction ofndicate the result from the numerical solution of the phase field
the discontinuous model and the dashed lines to the quasistatic sorodel with one concentration field whep=1. The circles and
lution. triangles indicate the numerical solution of the phase field model

and the nonquasistatic prediction of the sharp interface model when
2. Linear stability analysis x=0.

The consequences of the Ehrlich-Schwoebel effect on sur-
face dynamics vanish when. are large. Since this is in fact concentration jump may appear at the step. This situation
the domain of validity of the thin interface asymptotics, thecannot be tackled by a phase field model with one global
accuracy of the Ehrlich-Schwoebel effect at the steps is nG§oncentration field. Indeed, in the sharp and thin interface
easy to probe. Nevertheless, due to the advances in visugmits of this model, the concentration jump at the step must
ization techniques and in the atomic control of the surface, ihe small. In this section, a phase field model whose sharp

is nowadays possible to measure consequences of Sm‘?’rlllterface asymptotics is consistent with a finite concentration
Schwoebel effects. A recent example is the experimental dls]-ump at the step is presented

covery of a tiny Schwoebel effect on the(Si1) surface Going back to some more microscopic considerations, an

using island electromigratiof,22). L . extreme Ehrlich-Schwoebel effect corresponds to the case
Here, we focus on the meandering instability at StepsWhere the adatoms on the upper terrace in the vicinity of a
which is directly proportional to the Ehrlich-Schwoebel ef- PP Y
step cannot attach to the step or go to the lower terrace, these

fect[19]. The amplification rate is measured via the increas d beh h hich is di df h
of the amplitude of a sinusoidal meander of fixed wavelengtfdatoms behave as a phase which Is disconnected from the
lower terrace. To deal with such an extreme case, it is natural

Am- We consider the in-phase mode, which is the most un i ] A
stable mode, where all steps have the same meander. Th&g,congder that the concentration on both sides of the step

only one step, with periodic boundary conditions in the di-correspond to two different fields. A phase field model with
rection perpendicular to the step, is needed. A rectanguld®n€ concentration field on each terrace is therefore presented
gr|d is used, which is useful in the |0ng Wave|ength limit to in this section. We will first focus on an isolated step. The
account for three separate length scaMs<f¢<\,,. We  case of a vicinal surface will be analyzed later.
have used the parametéfé=0.1, OF =104, 7 1=10"% We now want a continuum concentration that sits on one
Ocq= 102, I'=1, D=1, d,=0.05, d_=0.6, v,=0, ¢ side of the step and which is zero on the other side. There-
=5. The step velocity expected from the step model is therfore, the concentration has to relax to the foéw 64y,
V=4.94x10 4, and the velocity of steps found from the where is a smooth function of the phase fie§tl with i
numerical solution of the phase field model ¥ =0 on one side of the step an@l=1 on the other side.
=4.934x10 % whendx=5x10"2 anddt=2x10"4. Instead of being proportional to the concentration gradient
The amplification rate is plotted in Fig. 6 as a function of v ¢, the diffusion flux is now proportional to the Wronskian
q=2m/\y. The accuracy is better than 10%. Note that weof ¢ and
have chosen parameters that obey constfgiot
A periodic model defined in Appendix C 2 was tested and 0
leads to qualitatively similar results. JdNV@_Dw[l’W 60— 6V . (72)

IV. PHASE FIELD MODEL WITH ONE CONCENTRATION

FIELD PER TERRACE ) )
In the step region, the concentrations on the upper and lower

A. Model equations for one step terraces are coupled by mass exchange with kinetic coeffi-

In the presence of strong Ehrlich-Schwoep#h] effect ~ cientsB... . We have chosen the index for lower side of
during growth or, in general, when kinetics is slow, a finitethe step, andy is denoted by¢, on this side. The index

021604-9
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— designates the upper side of the step. Mass conservatror@,; +Wr)[ - 3,0-—0_3,¢_1-W(N__0_—N_,6.)
now reads for both terracés:

WV
1 +——3,(0_+h_)=0(W?), (80)
5t0++ath+:D[¢+V20+_9+V2¢+]_;(0+_0i) D
—(Bis0,—B._0_), (73 D= T NQ14(0+ = Oeqdp ) +9-4(0- = Ooqd-)]
+W(aV+«)d,p=0(W?). (81)

1
80_+oh_=D[p_V20_—0_V3¢p_]— —(0_~ 6”)
2. Zeroth order

—(B--0-—B-.06,), (74) To zeroth order, Eq480) and(79) provide
wherer, 6%, andB. . are functions of. Another equation
is needed to determine the dynamics of the phase field itself: ¢° 3,0 _0—0_¢ &,7¢>9 =Bg_,
T4 hp=WV2—f 4+ N[0 4( 01 — Oeqd+)
$2 9,0, 0= 0.09,03=Bo., (82)
—I—g,(ﬁ( 0_— Heqd’—)]v (75)

where the coupling ternfin brackety comes from a direct Where Bo. are constants. From matching conditions,
analogy to Eq(19). g. are to be chosen to ensure that nei-9,%,9,$0—0 wheny— *. Thus,B,. =0, and

ther the position nor the sharpndssirvature of the minima

of f are changed by the coupling term. 0 0=0_od°,

B. Sharp interface asymptotics ~ o

1. Expansion of the model equations O10= 005, (83
Following the same trend as in Sec. lll, let us define the

inner region as the location of rapid variationsgfandé. In whered.., are arbltorlzjatry constants. From the matching con-

this region, Eqs(73—(75) are expanded for smallV. In  ditions (33), §,. = 654"

order to obtain the correct far-field limit, one needs To leading order Eq(.81) reads
lim B._=0, (76)
g Jyybo—5=0. (84)
Iin: B..+=0, (77 This equation is once again analogous to the sine-Gordon
n— +x©

equation. It has solitonlike kink solutior(she stepy going
from one minima off to the next one. Note that using the
thin interface asymptotics here is not appropriate. Indeed,
this would requiredy .. = 64~ , Which is just what we want
Moreover, we choosé~ |V ¢|. This leads to3=DN/W, to avoid. The sharp interface asymptotics is the adapted
whereN is of the order of 1. Let us calf, the smallest choice because it leavefg:' undetermined.

macroscopic cutoff length associated with the diffusion field.

Our small parameter is once agair W/{., and we define 3. First order

the inner variablen as previously. We now rescale all
lengths byf . (which amounts to také.=1 in all equations
ande=W). Expanded up to first order the phase field equa-
tions, Eqs.(73)—(75), read

lim 6%=Q7F=6". (78)

n—*e

The relevant information for dynamics appears to first or-
der. Equation(80) now reads

I L2 0,01 —01_ 3, + 12, 9,00

(0, T WK)[ 1 3,0, =0, 3,d ]=W(N, 6, =N, _60_)
(R ’ C0,(618% )]~ (N 8o —N°, 65,)

WV
+Fan(0++h+):O(W2), (79 0
+ 50,60 +h%)=0. (85)

“The diffusion terms in brackets are easily generalized to the casgrom Eqgs.(76) and (77), one has I|m N_.=0. Thus,
of a nonconstant mobility. This leads to a term of the form o
VIM.(¢.V6,—6,.V¢.)]. Since the variations of the mobili- taking the limit »— + in Eq (85 Ieaves By undeter-
ties M. do not affect the sharp interface asymptotics presented inmined. Equation(85) is integrated with respect tg. One
the following, we do not consider this generalization. finds
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¢% 9,01 — 01 9,0% + 182 49,00~ 0p- 3, (192 )
—[EOUW an°¢>0)—790+”" an°+¢3>

v
+5(00,+h9—h9+)=81. (86)

A
3 pyb1— f?p¢¢1zv_v[99r¢( 0o+ — Oeqb+)

+9% 4(0o- — Oeqp-)]
—(av+«)d,do. (96)

The solvability condition(or Fredholm alternativethen in-
Here,h_, =lim,_ ,.h_. In the limit wheren— +, one  dicates that the right-hand side of the second equation should
has 9,¢,—0 from matching conditions. Hence, the left- be orthogonal to the the solution of the homogeneous equa-
hand side of Eq(86) is zero. Therefore3,;=0. Since4°is  tion:
constant in the outer space, one ligg;—0 as n— —x.
Thus, one finds the kinetic boundary condition

A
B W[g(-)l—¢( 0o+ — 0eq¢+)+gg¢( 0o — Oeq-)]
Df dy N9_¢9>

f d#nd,bo

D (9,701_+U’bo_:V[hg]i+ "éo_

—(aV+ K)a,]qso} —0. (97)
. (87)

_790+

Dfi dyN® , ¢°
+ oo

The integration provides

which may be written as a condition equivalent to ELB)

0 0\ _ 0 0\ _
D ﬁr085t+vaggt:(a_l+ 930)()V+V((98T— Hggt), (f d¢ g+¢¢+>(00+ 0eq)+( f d¢ g—¢¢—>(00— eeq)
(88)

W
_ 0 2_
provided that N (av+ ")f d7(3,¢o)*=0. (98)

»=D fmd?? NO @0 = DJ'“Cd,7 N°, 4%, (899  Comparing this equation to the boundary condition, #9),
—o —o three relations are obtained:

1—a=—[h’]"+ x0eq. (90) 1 - 1 -
azéf d¢g+¢¢+:l_§f d¢g,¢¢,, (99
Using the same method for the other side of the step leads to

D 4,654+ VO'=(a+ xOeq) V+ v( 654 — 654, (91 aw
rbo+ o+ = (a+ x0eq) V+v(6py — 052), (91) B:Ef A9, bo)?, (100
where we have used
+ o0 + W 2
V=Df an3_¢9=Df dyN9, 4%, (92 Fﬁeqj—gf dn(d,¢0)°, (101
a=—[h3]" = xbeq. (93)  where
Combining Eqgs(90) and (93), we find o 0 o .o
g:f d¢(g+¢¢++g,¢¢,). (102
[hy+h_]f=-1, (94
which is expected sinde, +h_ is interpreted as the concen- N summary, the sharp interface asymptotics provides a

tration of solid in the layer bounded by the step. Followinglink between the phase field model and the discontinuous
the same line as for the phase field model, with one concernodel. The coefficients of the boundary conditions are given
tration field, Egs.(90) and (93) show that the phase field PY EAs.(89), (90), (92), (93), (99), (100, and(101. Since
model Eqs(73) and(75), is variational at equilibrium only if None of these parameters scale with the sharp interface
y=1. This analysis is performed in detail in Appendix B. limit of the phase fleld.mode'l with one concentrgtlon fl_eld
In order to recover the third boundary condition of the P&" terrace leads to a dls_cc_)ntlnuous step model with arbitrary
discontinuous model, let us first note the formal similarity Kinetics. Note that combining Eq€L00) and (102), the step
between the first order contributions in Eq81) and (84)  diffusion constant is found to be equal [t5]
differentiated with respect tg

N

W

1 e
9op3yh0) ~ T y56=0, 99 a7, (v ITl=p". (03

021604-11



O. PIERRE-LOUIS PHYSICAL REVIEW E68, 021604 (2003

C. More than one step
2
A direct extension of the previous model to the case of a 10
surface with an arbitrary number of steps is to use one con:
centration field per layer. The set of model equations would 0.05
then be written as )
10° |
1 T
atan"_athn:D[‘ﬂanan_anzwn]+;(az_en) > b 0
13
>:
_[0n(81++827)_0n7162+_0n+151—]x -4
107 ¢ -0.05 s .
(104) 10°  10° 10
dW
where h,,, #,, and B . are smooth functions ot. h,
=h, close to the upper step at the edge of the terrace of ‘ ‘ ‘ ‘
heightn andh,=h_ in the vicinity of the lower stepy, is 10° 10’ 10° 10° 10*
equal to one on thath terrace and zero elsewhere. An addi- d,/W
tional equation determines the dynamics of the phase field
itself FIG. 7. Same as Fig. 3, but using the phase field model with one

concentration field per terrace. Paramet&ts:1, QOF=10"8% D
s =1, 19=0, =105 T'=10%, 7 '=10"2 (circles, and 7 *
7y S p=WV2H— {4+ NW2 G 0= Oeqin), =102 (squares

(105

whereg,,, is a function of¢. The sharp interface asymptot-

ics of this model around one step is the same as what was
presented in the preceding section. Therefore, model equavhereo,o,0,==*1. z==*1 is a periodic function ok,
tions (104 and(105) correspond to a stepped surface with anwhose period is two times that of the periodic potentia

1+z 1-z
= B_ (110

1:92 2 6‘71'024— 2 01,70’

B;

arbitrary number of steps. changes sign each time goes through a minimum of
(which corresponds to a terrgc#’ ™ andh* also obey Eqg.
D. Numerical simulations (109. Explicit examples are given in Appendix D. Once
again, the sharp interface asymptotics of this model around
1. Three fields model one step is clearly the same as that presented in the case of

On a stepped surface, a large number of concentratiofn isolated step.
fields might be numerically difficult to handle. We presentin A numerical solution of the three fields model was per-
this section a trick to avoid this unlimited number of concen-formed using a simple Euler scheme in time and second-
tration fields. The idea is simple. We only use two concen-order finite differences in space, with time stpand grid
tration fields, each one is used for every other terrace. Thigttice unitdx. The model parameters are that calculated in

model equations now read Appendix D 1 b. The equations were solved on a rectangular
lattice, where the lattice parameter along the average step
D[¢* V20, — 0. V2¢p* | +(B*, 0, —B*_6_) direction is adjusted to the numerical needs.
1. 2. Step velocit
(057 = 0,) =90 +dh% (109 °p veay
T We first check the velocity of straight steps on a grid
having a few points in the directionalong the step and 101
D[¢*V20_—6_V2p* |+ (B _6_—B* . 6.) points in the other direction. We have checked that changing
1 the number of points in the lateral direction does not affect
+;(0’i°°— 0_)=a,0_+ah*, (107) the resultwhen steps are stable with respect to meandgring

We have also checked that the number of steps in a regular
vicinal surface does not affect the velocityhen the surface
W2V2p—f 4y = NW[G% 4( 0. — Oeqdb ) + 0% 4(6_— Oeqp*)] is stable with respect to step bunching
The first result that we have checked is the agreement of
=7y 01, (108 the step velocity with the prediction of the discontinuous
N ) model as a function of the kinetic coefficients. As shown in
where quantities with *” change value from one step to the Fig. 7, quantitative agreement is found over five orders of

other, e.g., magnitude. We have also checked the saturation of the step
velocity when the interstep distance is larger than the desorp-
o =E¢ n Eqﬁ (109 tion lengthx= VD7 (see Fig. 8 We find very good agree-
o 2 T2 T ment with the nonquasistatic prediction of Appendix E. Mod-
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FIG. 8. Same as Fig. 5, but using the phase field model with one
concentration field per terrace. Parametéts=1, OF=10 3, D FIG. 10. Step velocity as a function of step transparency. Phase
=1, v;'=0.1, v7'=39.9, 1;=0, 6,,=10"°% I'=10% 7 field model with two concentration fields. Same parameters as in
=103 (circles, and 7~ 1=10"2 (squares Fig. 9, with v, varying anda=0.995.

em%gl%ﬁ;gasggcgseg?fﬁé rEesrLIIiI(t:?-Schwoebel effect on SteIarge values ofW. Nevertheless, sharper interfaces are
q Reeded for an accurate description of line tension.

velocity were then checked. Once again, good agreement is To check the bunchi icted th Vi

found with the predictions of the discontinuous mo¢ste 0 check the bunching rate, we restricted the analysis to

Fig. 9 step pairing: the increase or decrease of a perturbation of the
9. 9. . .. position of one step in a box with two initially equidistant
Transparency also affects step velocity. As shown in Fig, d. Thi d h & i

10, varying the kinetic coefficient, affects the velocity of a steps was measured. This corresponds to the @ mn

str:ai ht step, in agreement with doiscontinuous model redict—he dispersion relatiotsee Appendix I The results of the

tionsg P 9 P phase field model during growth and sublimation are in

' quantitative agreement with the discontinuous model, as

3. Linear stability analysis shown in Fig. 12.

The dispersion relation of the in-phase meander of a train
of steps in the presence of Ehrlich-Schwoebel effect was also
studied. The growth rate corresponding to a given wave- We now focus on the behavior of the step meander in the
length is calculated by fitting the evolution of the amplitude nonlinear regime. It was shown from multiscale analy8is
of a small sinusoidal perturbation. The results are plotted irthat step meander should exhibit spatiotemporal chaos in the
Fig. 11. Quantitative agreement is found at long waveJresence of significant desorption and close to the instability
lengths. A deviation at short length scales was seen. Thigireshold. This result is confirmed by our simulations, as
deviation vanishes a#/ gets smaller. From this result, we shown in Fig. 13.
conclude that kinetics is taken into account for relatively

4. Nonlinear dynamics

0.012
0.001 |

0.01 ¢

g 0001

> &
0.008 -0.003 |
0.006 -0.005
-1 ] . 0.6
201 q

FIG. 9. Step velocity as a function of the asymmetry in attach- FIG. 11. Growth rate of in-phase step meander in the linear
ment kinetics 2v— 1, with v+ v_*=40. Phase field model with regime, as a function of the wave vector. Same parameters as in Fig.
one concentration field per terrace. Parametefé=1, QF 7, but with 7~1=107%. Circles correspond t®WW=1 and y=0,
=103 771=10"2 D=1, 15=0, 6,q=10"° I'=10% ¢=20.2. squares taV=0.5 andy=0, and triangles t&V=0.5 andy=1.
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107 ‘ ‘ . A phase field model with one global concentration field
was then studied. We have performed thim interface as-
ymptotics where the departure from equilibrium at the inter-
face is chosen to be smadl priori. This leads to a discon-
tinuous model with fast kinetic$lndeed, fast kinetics is
needed in order to keep the smallness of the departure from
equilibrium at the interfage Since kinetics is fast, the inter-
face definition appears explicitly in the expression of the
kinetic coefficients. This dependence is consistent with the
independence of step dynamics with respect to a change in
the interface reference point. Thus, as opposed to [R&f,

we have well defined kinetic coefficients, even in the case of
fast kinetics. The numerical simulation of the phase field

|Re io|

10 ‘ . model is in agreement with the predictions from the discon-
-1 -05 0 0.5 1 tinuous model. But the Schwoebel effect is difficult to probe
o due to fast kinetics. Theharp interface asymptotids an

N ) ) _ expansion in the weak coupling limit. It therefore leads to a
FIG. 12. Palrlng rate as a function af (I.e., the Ehrlich- discontinuous model with Strong Step transparency_

Schwoebel effegt with v *+»-*=40. Circles correspond tg We have finally shown that a model with one concentra-
=0 and triangles toy=1. ParametersW=1, QF=10"% 7'  {on field per terrace allows one to recover arbitrary step
=10"% D=1, 19=0, fq=10"°, I'=10" ¢=30.15. kinetics, i.e., arbitrary strong Erhlich-Schwoebel effect and
step transparency. The numerical simulation of this phase

V. CONCLUSION field model is in quantitative agreement with the predictions

. . . . . of the discontinuous model over at least five orders of mag-

In this paper, we have first discussed the discontinuougiyde of variation of the kinetic coefficients. The occurrence
step model. Several reformulations of the boundary condiyf chags, predicted from a multiscale analysis of the discon-
tions at the steps were presented. The limit of perfect stefuous model for an isolated step during growth with sig-
transparencyvo—c was shown to correspond to kinetic pificant desorption was checked.
boundary conditions used in solidification. Moreover, step The kinetic boundary condition with equilibrium refer-
transparency may be incorporated in the step model as énce state y=1) was found to be the only one that corre-
correction to the equilibrium concentration due to step mo-sponds to variational dynamics at equilibrium in both types
tion. The general stability analysis of a vicinal surface duringof phase field models. Thus, the model with adatom vacuum
growth was performed within the framework of the discon-reference statex(=0) does not seem to be thermodynami-

tinuous model. cally consistent.
To the best of our knowledge, the phase field model with
130 : one concentration field per terrace is a new model. This

model may be relevant for heteroepitaxy: a straightforward

L N — generalization is obtained by choosing a diffusion constant of
/M\%W the adatoms that depends on the layer where they are located.
%__/_

L g e i This may be relevant for solidification when diffusivities in
W the solid and liquid phases are different. Indeed, this would
T T o e avoid incorporating nonvariational additional terms in the

I phase field model23].

= I —— ey More generally, the phase field model with Wronskian
e — diffusion flux, Eq.(72), is a powerful method to treat diffu-
T T ] sion problems in a domain limited by moving boundaries or

70 w in problems of diffusive relaxation to a field which depends
= on space and time.
g S g g As natural perspective for this work, an analysis of step
g DT s s collision, annihilation, and nucleation dynamics would com-
-10 3 10 plete a full description of a growing crystal surface.

FIG. 13. Full numerical solution of the 2D phase field model ACKNOWLEDGMENTS

with  Ehrlich-Schwoebel effect and significant desorption.  The author wishes to thank C. Misbah, K. Kassner, P.
Kuramoto-Sivashinsky-like chaos of the meander of an isolateq3erger and T. Biben for useful discussions.
step. The front is presented at different times. Time units are arbi-

trary. Parameters areV=0.3, I'=10°, QF=2x1072 6, APPENDIX A: VARIABLE EQUILIBRIUM

=10"% r=1,D=1 V11= 0.1, p_l= 20, dt= 10_2, dx=0.2. The CONCENTRATION

supersaturation is defined as-F r/c.q— 1. The critical super satu-

ration for the morphological instability to appeards=2.3x 10°, The equilibrium concentratiofl is, in general, not con-
the simulation is performed withr=5x 10°. stant in the vicinity of the step region. Neverthelegg, has
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to be constant far from the stépere, we neglect any long This set of equations then decrease the functighaler the
range interactions—such as the ones of elastic oridihe  course of time. Indeed, up to boundary terms at the frontier
modified phase field model with @-dependent equilibrium  of the integration domain, one has

concentration reads

0— Oeq 0 dF J’d (9¢5.7: -I—(?Ué]:
= R - —_—= X _— _
6“9 \% MV( T +QF . &th! (Al) dt t 5¢) y t SU .
1(6F| \2 M[_6F| \?
2y 2 0= Oeq :fd ——l==| | —~ | V5
7 i p=WV-p—Tf +\ v |9 (A2) T\ 0|, N SU 4
_ _ 1(8F| \?
With W = 64/ Bq, Wherede, is the value off,, far from the T <0. (B6)
step. Using a similar expansion as for the model with con- ¢

stant equilibrium concentration, one finds a result similar to

that of Sec. lll. The main point is that the solid reference When y=1, condition(B3) is the same as the constraint
concentration must be replaced by a generalized referen%uation(SO), if h, =0. Kinetic boundary conditions with

concentrationh+ fq. Thus, the expression of the kinetic | 1 cqrresponds to microscopically variational dynamics at
coefficients (53)—(57) is unchanged, except that we now thermodynamic equilibrium.

have a new condition, When x=0, condition(B3) and the constraint equation

¢° B (50) are equivalent ihd = 6,(1—M°D) and
N+ 00g=— 7o T (1 X leqp T (AD)
1
which replaces Eq50), whereh, must satisfy relatiori51). j d7 o =0- (B7)
APPENDIX B: VARIATIONAL CHARACTER _ L ~ ~
OF THE PHASE FIELD MODELS This relation implies a very strong constraint = v,
AT THERMODYNAMIC EQUILIBRIUM which is not expected in usual systems. In general#

—~7_, and the phase field model with=0 is not varia-

tional. (A noteworthy fact is that wherv,=—7_, the
model with y=0 is formally equivalent to the model with

1. Model with one concentration field

Let us start with the energy functional

W2 B, x=1, whereB is simply corrected by a constang— 3
_ 2 €q 2 ~
7= [ ad S (Vg 2re (00 BD g, )
wheredx is the surface elemeng, is a function of¢, and 2. Model with one concentration field per terrace

feq is the constant value di, far from the steps. We now

define the total concentratiaie., adatom gas plus sojid We here consider an isolated step. The generalization to

an arbitrary number of steps is straightforward. We start with
the energy functional

U=6+h. (B2
W2 2 A 2
Suppose that J—‘2=fdx 7(V¢) +f+20 ) (01— Ocq)
eq®@+
g
h=—-——, B3 — 2
o] (B3) +29eq¢_(9, Oeqb-)?|. (B8)

up to an arbitrary additive constant. One can then easily

check that, up to higher order terms(6— 0eq)2, the phase Following the same line as in the preceding section, we de-
field model with one concentration field, Eq83) and(24),  fine

may be written at equilibrium, wheé”= 6,:

U=V|MV oF LoF B4 e 59
MU= sul,)|"reul, B
U =h_+6_. (B10)
156
ﬁt(ﬁ:——% . (B5) .
p U We now propose the relaxation model
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5F, and neglecting second-order termg 6— 0eq)2, the relax-
HU =V M+VE ation equations may be rewritten as
u_.¢
O, +dh, =V{M, (0,Vp,—¢,. Vo
C 5?2‘ 5]:.2 ) 1 5?2 tY+ thh+ [ +( + ¢+ ¢+ +)]
_ _ _ = , 1
Uily p U-ly o) Uy B0 h — 0 b)= (0~ Oeqh ),
(B11) (B19)
62 9 0_+ah_=V[M_(0_Vd_—¢_Vo_)]
wU_=V M’V(SU 1V O VO eV -
~lu, 4 1
—B(O_¢p,—0,¢p_)— —(60_—0q0-),
c 5f'2‘ 5-7:2 1 5}—2 ( ¢+ +¢ ) T( eq¢ )
5u,|u+,¢ SUily 4 TedU-fy (B20)
(B12 - 0,
1 8F, e
op=—— 5—¢ . (B13) 0.
T$ U,.u_ +(h_ g+ Oeqd—y) -11|. (B21)
Oeqd—

This_model decre_ases the energy functiofal Indeed, up tg Comparing to the model in the main text E¢83)—(75), we
negligible terms integrated along the boundary of the intexee that some conditions are needed for the phase field model

gration domain, one has to be variational at equilibriunii.e., when6% = 6¢q¢ . ):
d SF, SF, = =
—f2=j dx| oy —= U, —2 Bi+=B-.=B¢-, (822
dt S, o oU. |, s
U - B_.=B_ _=B¢,, (B23)
8F,
+&tU_W g+¢09q¢+:h+¢+ 0eq¢+¢, (824)
B ¢
N
3 J' d 1 5‘7_'2 2 M v 5.7:2 2 g,¢0eq¢, = h,¢+ Heq¢,¢ . (825)
- | O U U MU .U Integrating and combining Eq&B24) and (B25), one finds
b
SF, 2 [ oF.
M| vatE -C 2 dd g ed+ h,1t—
5U 5U [ +]— 0eq
“lgu, +tlgu = hoh ] (B26)
S5F, 2 1( 57, 2 J' dod(g4 4P+ +9_4b-) th+h-]-
ouU_ .U, 7| o6U sU
1/ 6%, 2 f d¢g-y¢- [h_ 17+ feq
-—s5- <0. (B14) =[h hl (B27)
€ Uy J'd¢(g+¢¢++g,¢¢,) T
Defining Combining Eqs(93), (90), (94), and(99), we find that con-
) ditions (B26) and(B27) are verified only whery=1. There-
M. — &% Oeq (B15) fore, the phase field model with=1 that verifies conditions
TN o (B22)—(B25) is variational at equilibrium. In contrast, for the
model with y=0 no variational formulation was found.
ey We will end this section with an example of functiolns
M,=_Teq/\/l, , (B16) andg. that obey condition$B24)—(B25):
o hi=—[a(4¢L—3¢1)+bcqdb: ], (B29)
_ VeqP+P-
C=—% & (B17) ho=—[~(1-a)(4¢2 3% )+ feb_], (B29)
S (B18) 9+ = (=33 +2¢3)2al by, (B30)
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g_=(3¢>—2¢%)2(1— @)l feq. (B31)  sine-Gordon equation. Once again, E@S) and(54) lead to
The four functionsh.. andg-. are defined up to an arbitrary _7-,_1/28+_E|7 c11
additive constant. Ms=77 w (C1D
APPENDIX C: EXPLICIT MODELS WITH ONE 37%2d, —d_
CONCENTRATION FIELD M= — W (€12
1. One step .
) and with help of Eqs(56) and (57)
Here, we want to consider one step only, the free energy
does not have to be periodic, and a simple double well po- 4 W
tential is enough for our purpose A= 77_3/2 08?, (C13
¢ ¢
f—_?+T, (Cl) Da*_o 298 235+ o4 C14
. Ms e (C19
2 5
=¢— = >+ — C2
9=¢ 3 ¢ 5’ €2 APPENDIX D: EXPLICIT MODELS WITH ONE
CONCENTRATION FIELD PER TERRACE
D
MLm= ¢ tmag(1-¢%,  (CY 1 Model A
A simple choice that satisfies Eq®2) and (89) is
and h,=0. The zeroth-order solution fowp is o= B,.=B_.=B¢_, (D)
—tanh(@/\/2). Using Eqs(53) and(54), one finds
~ ~ B__=B, =B¢,, (D2)
d,+d_ Ca
mg=———, )
s 2W\/§ with
7d,—d_ Wf dy B¢ ¢° =v. (D3)
m,== ———, (CH
6 w2 o o e
A specific choice that satisfies this relation is
whered.. =D/v.., and from Egs(56) and (57) bo+d =1, (D4)
5 W B=6v|V¢.|=6v|Veo_|. D5
)\:mo_r, (CG) V| ¢+| V| ¢ | ( )
Oeq The first equation means that the total equilibrium concen-
N tration fgq¢ 4 + Oeq@— to be strictly constant, even in the
Da _ @Jr Em (C7) step region. We then defirte. andg- as
N 525 231 %'
hy=—(a+xbeg) -, (D6)
2. A train of steps
: - . o ho=[1-(a+xbeg)]d-, (D7)
A simple explicit model that has the required periodicity
'S g+=ag, (D)
1
f=—cogm¢), (C9) g-=(1-a)g. (D9)
1 a. One step
g=¢+ —sin(mw¢), (C9Y For one step, the functiorfsandg can still be chosen as
m Egs.(C1) and(C2). Then, we define
D . 1
M —1tmdl+cosmh)]+mysin(mg),  (C1O $-=5(154). (D10)

with h, =0. Now, to zeroth order¢ is the solution of a Then, from Eq.(101)
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5 1 We also define
A= —— ——. (D11
22 03,1 :
s=sinh(€/xq4), c=cosh{/xy), (E5
b. A train of steps
For a train of stepd,andg are defined from Eq$C8) and e _
(C9). For the three fields model, we then choose Sg=Sin(€/2¢€q),  cq=costi¢/2(y), (E6)
1 | .
d,tzz 1+ S'”(E(ﬁ”' (D12)  and the determinant
We also defineg=sigr{ cos(@/2)]. The terraces are then de- Dy, 1 1/1 2a—1 2
fined as the regions whegg=2n+ 1, wheren is an integer. > =§c+ 5 a+ o s+ W(C_Cd)' (E7)
The value of the coupling constant is calculated using Eq. d d do
(10D):
s 1 The steady state concentration on both sides of the step reads
N=——. (D13
72T 6,
) 0_2 aA 6~ 1+1—a+1 +1
2. Model B >N L B N L YRR R N L
We now want to write down a model where the exchange _ o

- . . . (1-a)A 607\ 1
term is simply proportional to the concentration difference — | 4 || —e2ta+ —s|}, (E8)
(6, —6_). To do so, we still use Eq$D4) and (D6)—(D9), g €q/ X
but

B,,=B_.=2v|Vo,|, (D14) 2 (1-a)A u, 1 a 1
Og-— b=~ | ———+||| 55+ 5+ 3]s
B,,:B+,:2V|V¢,|, (D15) 1 (OZA uoc) 1 ot ]

. ) +—c|—|—=——-—-||—e d+ —s|t,
Conditions(92) and(89) are then fulfilled. The values of the Xd o ty/[Xq 0
coupling constant for one step or for a train of steps are still (E9)
given by Eqgs/(D11) and(D13), respectively.

APPENDIX E: STEP VELOCITY AND DISPERSION whered”=Q rF. An equation for the step velocitpr € ) is

RELATION IN THE DISCONTINUOUS MODEL then obtained from mass conservation at the step

We consider here the cage=0. The calculation for the
casey=1 is similar. Moreover, an inspection of E(L8) S 1 1 1 2
ihozx\is th)at both cases lead to the same result whgn D°2_€d=A X_§+2_€d S—msd +Xd—d(C—Cd)
<x(1—X).

Let us consider a perfect vicinal surface, i.e., all steps are chq 1 1 20—1
separated by the same terrace widthDuring growth or 57 ST Sd| T (c—cy)y-

. R K €d 2€d X4 Xq

sublimation, a steady state exist, where all steps have the
same velocity, this is the step flow mode. We define (E10

1 V
LR (DY, A=Q(7F-cg), (ED  For small perturbations of the steis(x,t), the discontinu-
d ous model is linearized. The Fourier transform of the pertur-

and the length scales bation ¢ is defined as
1 v 1 N 1 E2
d D do d++d_ ! é’wk‘P:j dtf dX; e—i(wt+kx+nzp)§n(xlt). (Ell)
5=pD=(d;t+d-H 1, (E3
1 1\ Going to Fourier space and using the discontinuous model to
Xqg=| —+ 2 (E4) first order inZ, a relation is found between, k, ande. This
a4ty %s is the dispersion relation
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iwD_ 2Ad AZ
D2~ g (P Pa+ATq

o 1 QF 1 1
D [(1_a)00++a'907]_F_a(’?200+_’92007) 2_€dq_Adqd

S

02Tk +

o 1 QF 1
Tlp T2 [—(1—a)bg +aby_]— F(Za_ 1)+ a(a200++‘9200—) Ag[p—pdl
XS
o 1 1 2a-— ) o 1
+ B+x_§ (0o —00-) a+€—d +lad,bp +(1—-a)d, b0 JA° 1 q+ B+x_§ (6o+—00-) { APy,
(E12
I
where we have defined gg=sinhie+€/2¢y), (E18
Do agp+|tasaes 22 200 o, pa=coshi g+ €/2¢ ), (E19
2 d 204 do
(E13 and the zeroth-order gradients at the steps are related to the
concentration via
and
. 0. — 0 Oor— 60— 6
i w 1 1/2 _ 0+ eq 0+ 0 . i
A= gtk (E14) Goborma—5—+ g~ ED
S
O0o-— 6 Opr— O0g—  6Op_
1 1/2 (32907=—(l—a) 0 eq+ 0+ 0 _L.
Ag=| —+A?| (E15 g do ta
444 (E2))
gq=sinh(A4¢), (E16) Note that, although the notations are not well adapted to this
case, the steady step velocity and the dispersion relation are
p=coshAq4f), (E17 perfectly well defined in the limit—co.
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