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Phase field models for step flow

O. Pierre-Louis
LSP-Grephe, CNRS/UJF, Grenoble 1, Boıˆte Postale 87, F-38042 Saint Martin d’He`res Cedex, France

~Received 24 January 2003; published 15 August 2003!

The relation between phase field and discontinuous models for crystal steps is analyzed. Different formula-
tions of the kinetic boundary conditions of the discontinuous model are first presented. We show that~i! step
transparency, usually interpreted as the possibility for adatoms to jump through steps, may be seen as a
modification of the equilibrium concentration engendered by step motion.~ii ! The interface definition~i.e., the
position of the dividing line! intervenes in the expression of the kinetic coefficients only in the case of fast
attachment kinetics.~iii ! We also identify the thermodynamically consistent reference state for kinetic bound-
ary conditions. Asymptotic expansions of the phase field models in the limit where the interface width is small,
lead to various discontinuous models.~1! A phase field model with one global concentration field and variable
mobility is shown to lead to a discontinuous model with fast step kinetics.~2! A phase field model with one
concentration field per terrace allows one to recover arbitrary step kinetics~i.e., arbitrarily strong Ehrlich-
Schwoebel effect and step transparency!. Quantitative agreement is found, in both the linear and nonlinear
regimes, between the numerical solution of the phase field models and the analytical solution of the discon-
tinuous model.

DOI: 10.1103/PhysRevE.68.021604 PACS number~s!: 81.10.Aj, 81.15.Hi, 68.35.Ct
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I. INTRODUCTION

From molecular dynamics to the macroscopic continuu
the description of a crystal surface may take a wide var
of forms, depending on the range of scales that is used.
mesoscopic approach at intermediate scales, modeling
surface as a collection of crystal steps separated by
symmetry terraces is a powerful tool for studying surfa
statics and dynamics@1#.

Progress in the understanding of nonequilibrium surf
dynamics has been achieved. Still, many questions rem
open such as the precise link between microscopic atom
tion and step kinetics@2#, steps dynamics out of the weak
unstable regimes@3,4#, or in complex geometries@5,6#. Steps
dynamics is nonlinear and nonlocal in time and space—
can be seen explicitly by means of a Green’s function f
malism @7,8#. Nonlocality comes from the coupling of step
via the diffusion of adatoms on terraces. Nonlinearities a
from step geometry, but also from the fact that steps are
moving boundaries.

In the phase field approach, the interface~the step! is a
region of fast but continuous variation of an order parame
~or phase field!. Phase field models can be seen as an in
mediate description between molecular dynamics and s
dynamics, opening new ways for a quantitative link throu
the length scales. Since they do not require an explicit tra
ing of the fronts, phase field models also simplify the n
merical computation of steps dynamics.

Several studies were already devoted to the phase
formulation of steps dynamics@6,7#. In this paper, we focus
on a comprehensive and quantitative description of step
netics.

We first present a discontinuous model for steps with g
eral kinetics. Some discussion and rewriting of the bound
conditions are presented. These alternative formulations
tain some interesting hints about the physical interpreta
of step kinetics.
1063-651X/2003/68~2!/021604~19!/$20.00 68 0216
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~i! The microscopic origin of step transparency is d
cussed. It is found that transparency, traditionally related
motion of mobile atoms through steps@9,10#, can be seen as
a modification of the equilibrium concentration engende
by step motion. This allows an explicit link with the kineti
boundary conditions used in solidification@11#.

~ii ! The interface definition~i.e., the arbitrary position of
the dividing line which allows to calculate interface exce
quantities! intervenes in the expression of the kinetic coef
cients only in the case of fast attachment kinetics. But
model is still well defined in this limit as opposed to previo
work in the literature@12#.

~iii ! Using the correspondence to phase field models,
identify the reference state for the boundary conditio
which is consistent with thermodynamics.

For the first time to the best of our knowledge, the st
velocity and the linear dispersion relation for a vicinal su
face are calculated from the discontinuous model in the n
quasistatic case with general step kinetics and in the pres
of adatom deposition and desorption, including both step m
andering and step bunching.

We then present two phase field models. Within differe
types of asymptotics, the phase field models are show
lead to different discontinuous models. Despite the leng
algebra of the asymptotic expansions, an overall sim
physical picture arises that connects the length scales.

A phase field model with one concentration field is fir
presented in Sec. III. The so-calledsharp @13# and thin @14#
interface asymptoticsare performed. They lead to discon
tinuous models with strong transparency and fast attachm
kinetics, respectively. The numerical solution of the tw
dimensional~2D! phase field model is shown to be in qua
titative agreement with the discontinuous model.

Nevertheless, this phase field model cannot account
slow kinetics that may lead to a finite concentration jump
the step~e.g., strong Ehrlich-Schwoebel effect observed
metal surfaces@15# leads to a finite jump of the concentratio
©2003 The American Physical Society04-1
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at the step during growth!. In order to solve this problem, w
propose a model with one concentration field on each ter
in Sec. VI. This model allows a finite concentration jump
the step. The sharp interface asymptotics is shown to lea
a step model with arbitrary~i.e., not necessarily fast! step
kinetics. The numerical solution of the 2D phase field mo
is in quantitative agreement with the analytical solution
the discontinuous model on at least five orders of magnit
of variation of the kinetic coefficients.

Finally, the nonlinear dynamics of an isolated step dur
growth is studied. The numerical result of the phase fi
model is in agreement with the multiscale analysis of
discontinuous model@3#.

II. DISCONTINUOUS MODEL

A. Model equations

In the discontinuous model, steps are lines that define th
boundary of three phases: a solid phase, and two gas
two-dimensional adatom phases on the neighboring terra
one behind and one in front of the step. On a terrace, m
conservation is written as an evolution equation for the a
tom concentrationc:

] tc5D“

2c1F2c/t, ~1!

where ] t indicates the derivative with respect to time. A
shown in Fig. 1,F is the rate at which atoms are adsorbed
terraces@from a molecular beam or a three-dimensional~3D!
gas phase#. D is the diffusion constant of adatoms on terrac
andt is the adatom desorption time. At a step, there are
independent thermodynamic forces:

X65c62ceq* , ~2!

where6 refers to the diffusion fields in front of and behin
the step. The local equilibrium concentrationceq* depends on
the free energy of the stepsF. Using a linear thermodynam
ics picture~linearized Gibbs-Thomson relation!, we have, in
the vicinity of a step of meanderz,

ceq* 5ceqS 11
V

kBT

d F
d z D , ~3!

whereceq
0 is the equilibrium concentration in the vicinity o

a straight step. HereF5*dsg is the free energy of the step
where s is the step arclength andg is the line tension.

FIG. 1. A vicinal surface with microscopic transport processe
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Then one has (dF/dz)5g̃k, wherek is the step curvature
and g̃5g1g9 is the step stiffness. We then defineG
5Vg̃/kBT such that

ceq* 5ceq~11Gk!. ~4!

There are three mass fluxes at the step: the diffus
fluxes J6 and the quantity of matter transformed from 2
gas to solid denoted byJs ,

J652~D]nc61Vc6!, ~5!

Js5
1

V
V, ~6!

whereV is the normal step velocity, 1/V is the solid concen-
tration, and]n5n•“ is the derivative in the direction norma
to the step. They are related through global mass conse
tion at the step, which is written asJs1J25J1 , or

1

V
V5~2D]nc22Vc2!1~D]nc11Vc1!. ~7!

Thus, only two of the three fluxes are independent, a
should be related to the thermodynamic forces using lin
phenomenological laws. The kinetic boundary conditions
then written as

2~J12Jr !5L11X11L12X2 ,

~J22Jr !5L22X21L21X1 . ~8!

The second term on the left hand side~lhs! is the flux in the
reference state for a referential moving at a velocityV:

Jr5Vceqx. ~9!

Two cases are considered: adatom vacuum~or bare terrace!
reference statex50 and equilibrium reference statex51.
From the link to the phase field models, we will argue in t
following that x51 is the only thermodynamically consis
tent model. From Onsager reciprocity relationsL215L12

[2n0. We then definen1[L112n0 and n2[L222n0.
Relations~8! are now written as

2~J12Jr !5n1~c12ceq* !1n0~c12c2!,

~J22Jr !5n2~c22ceq* !1n0~c22c1!, ~10!

n6 are related to mass exchange between1 and2 adatom
phases and the solid.n0 was introduced first in Ref.@10#, and
describes ‘‘direct’’ exchange between terraces, this phen
ena is called step transparency. The different kinetic p
cesses at the step are depicted in Fig. 1. One then has

V

V
5n1~c12ceq* !1n2~c2ceq* !. ~11!

Interestingly, this relation shows that the termVc62Vceqx
on the lhs of Eq.~10! is second order in the departure fro
4-2
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PHASE FIELD MODELS FOR STEP FLOW PHYSICAL REVIEW E68, 021604 ~2003!
equilibrium (c2ceq* ) whenx51. Similarly, the termV(c1

2c2);(c2ceq)
2 on the right-hand side~rhs! of Eq. ~7!. In

a linearized picture, these terms can be neglected, anJ
2Jr'2D]nc.

B. Discussion of the boundary conditions

1. Step transparency and link to solidification

Equations~1!, ~7!, and ~10! @with Eq. ~3!# describe the
deterministic dynamics of a set of steps as long as step nu
ation or collision does not occur. This formulation allows o
to interpret n0 as a kinetic coefficient for mass exchan
between terraces. But linear combinations of Eqs.~7! and
~10! lead to alternative and equivalent sets of boundary c
ditions. As a first example, kinetic laws at the step may a
be written as

2~J12Jr !5 ñ1~c12 c̃eq!,

~J22Jr !5 ñ2~c22 c̃eq!, ~12!

where we have defined

c̃eq5ceq~11Gk!1b̃
V

V
, ~13!

and the kinetic coefficients

ñ15n11n0~11n1 /n2!, ~14!

ñ25n21n0~11n2 /n1!, ~15!

b̃5S n1n2

n0
1n11n2D 21

. ~16!

In the limit of opaque steps (n0→0), Eqs.~10! and~12! are
identical. Equation~12! shows that step transparency (n0
Þ0), usually described as the possibility for direct exchan
of atoms between terraces, can equivalently be seen
correction of the equilibrium concentration at the step due
step motion@term b̃V in Eq. ~13!#. In the limit n0→`, we
recover boundary conditions similar to that used in solid
cation @16# ~here, concentration replaces temperature!:

c15c25ceq~11Gk!1b̃
V

V
. ~17!

Note that the attachment-detachment asymmetry~Ehrlich-
Schwoebel effect! is irrelevant in this limit.

2. Global-exchange boundary conditions

A third equivalent formulation will naturally appear i
Sec. IV from the analysis of the phase field model. The fi
two equations account for global mass conservation at e
side of the step:
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2~J12Jr !5a
V

V
1n~c12c2!,

~J22Jr !5~12a!
V

V
1n~c22c1!, ~18!

wherea measures the kinetic asymmetry of the step.n is the
global-exchange kinetic coefficient between terraces, n
rally arises from the solution of the discontinuous model~see
Appendix E and Ref.@17#!. A third equation, equivalent to
Eq. ~11!, relates the velocity to an asymmetric thermod
namic force:

V

V
5

1

b
@a~c12ceq* !1~12a!~c22ceq* !#, ~19!

whereb is a kinetic coefficient having the dimension of th
inverse of a velocity. The new kinetic coefficients can
related to the previous ones via

n5n01~n1
211n2

21!21, ~20!

a5
n1

n11n2
, ~21!

b5
1

n11n2
. ~22!

C. Step dynamics on a vicinal surface

A vicinal surface is a~staircaselike! surface where all
steps have the same orientation. During growth or sublim
tion, there exists a steady state for a vicinal surface w
equidistant and straight steps, where all steps have the s
velocity. This is the step flow growth mode. Since it is free
nucleation events, this growth mode is a candidate for
production of atomically flat surfaces in molecular beam e
itaxy. Using Eqs.~1!, ~7!, and~10!, the steady state concen
tration and the step velocity were extracted.

In the quasistatic limit, which is widely used in the litera
ture, the lhs of Eq.~1! is neglected. Moreover, it is suppose
that Vc!Du“cu, so that the diffusion flux isJ'2D“c.
This approximation is not justified when diffusion is slo
~e.g., at low temperature or for large molecules! or when the
concentration is high. An implicit expression for the full no
quasistatic step velocity is given in Appendix E.

During growth, a meandering instability appears in t
presence of a normal Ehrlich-Schwoebel effect,n1.n2 and
a bunching instability in the presence of an inverted Ehrlic
Schwoebel effect;n1,n2 . These kinetic instabilities may
be considered as a source of undesired surface roughnes
the other hand, this spontaneous pattern formation may
used to produce large scale networks of nanostructures.
reader interested in an extended discussion of the stabilit
a vicinal surface should refer to the literature@18,19#. The
nonquasistatic linear stability analysis of the model was p
formed and the dispersion relation is written in Appendix
From this implicit relation, the rate of amplification or deca
of a small perturbation is extracted numerically.
4-3
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When steps are morphologically unstable, a multisc
analysis must be performed in order to predict nonlinear
namics at long times. As an example, in the case of an
lated step, Benaet al. @3# have shown that the meander obe
the Kuramoto-Sivashinsky equation, which exhibits sp
tiotemporal chaos.

In the following, we will use these analytical prediction
of the discontinuous model~i.e., step velocities, meanderin
and bunching rates, and nonlinear dynamics! in order to
check the quantitative agreement between the discontinu
and phase fields models.

III. PHASE FIELD COUPLED TO ONE GLOBAL
CONCENTRATION FIELD

A. Model

The traditional phase field model is a model with a pha
field f coupled to a driving field. In the limit where th
width of the interface is small, different discontinuous mo
els have been obtained, depending on the precise asymp
that is used@13#. Some phase field models for steps we
already proposed@6,7#.

In this section, we present an extended version of
phase field model with one concentration field depicted

FIG. 2. Discontinuous model~a!. Phase field model with one
concentration field~b! and with one concentration field per terra
~c!. ~Although this schematic is one-dimensional and with only o
step, all models are two-dimensional and the number of step
arbitrary.!
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Fig. 2, which includes a variable mobility of the atoms in t
step region.

The first model equation accounts for the evolution of t
adatom coverageu5Vc ~whereV is the atomic area!:

] tu5“@M“u#1VF2
u

t
2] th, ~23!

whereM is the nonconstant adatom diffusion constant andh,
the solid concentration, is defined up to an additive const
The second equation is an evolution equation for the ph
field f itself:

tp ] tf5W2¹2f2 f f1l~u2ueq!gf , ~24!

whereW is the interface width.M, h, f, andg are periodic
functions of f. The indexf indicates derivation with re-
spect tof. f is an energy density having minima for value
of f corresponding to terraces.g is a coupling function de-
fined in such a way thatgf and gff both vanish at the
minima of f. This model can be further generalized to a
count for a nonconstant equilibrium concentration. Nevert
less, this modification does not affect the main conclusio
of the present section, as shown in Appendix A.

In the following, the thin and the sharp interface asym
totics will be presented. In both limits, the productl(u
2ueq) is small. In the sharp interface asymptotics, the co
pling constantl is small. This corresponds to a weak co
pling limit, i.e., steps are very transparent. In the thin int
face limit, the coupling constant is not small, but th
departure from equilibrium at the interfaceu2ueq is small.
This means that we assume that interface kinetics is
enough foru to relax to a value which is nearueq . In the
following, we describe both types of asymptotics in mo
detail.

B. Thin interface limit

1. Expansion

Starting from a phase field model with constant mobil
M5D, Karma and Rappel@14# have presented a form o
asymptotics, called the thin interface limit, that accounts
step dynamics with instantaneous attachment kinetics.

In order to extract an effective discontinuous model fro
the phase field model with variable mobility~23! and ~24!,
an asymptotic expansion is performed, following the lines
the thin interface limit presented in Ref.@14#. Let us define
the small parametere5W/,c , where,c is a cutoff length
related to diffusion on terraces. In the following, all distanc
are normalized by,c , so thate5W. We expect the fieldf
to stay in minima of the free energyf in wide areas, which
define terraces. From one terrace to another,f smoothly
jumps from one minima to the other. Thus, two regions
considered, where two different expansions are made.
inner region~the step region!, where the fields have zeroth
order variations on a distance of orderW. An outer region
~terraces!, where the fields might have zeroth-order var
tions on a distance of order,c . The geometry of the inne
region is imposed by the position of the step, where norm
and arclength variablesr ands are defined. In the inner re
gion, we define the variableh5r /W and the inner fields

e
is
4-4
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PHASE FIELD MODELS FOR STEP FLOW PHYSICAL REVIEW E68, 021604 ~2003!
u in(h,s) andf in(h,s). These fields are expanded as

u in~h,s!5u0
in~h,s!1Wu1

in~h,s!1W2u2
in~h,s!1•••,

~25!

f in~h,s!5f0
in~h,s!1Wf1

in~h,s!1W2f2
in~h,s!1•••.

~26!

Model equations~23! and~24! are expanded up to first orde
in W in the inner region

o~W2!5]h@M ]hu in#1W~V1Mk!]hu in1WV]hh,
~27!

o~W2!5]hhf in2 f f1l~u in2ueq!gf1W~Va1k!]hf in,
~28!

wherek is the curvature of the step. The step diffusion co
stant

1

a
5

W2

tf
~29!

is taken to be;o(1), hencetf;W2. This choice ensures
that the internal dynamics of the step is fast enough to m
tain a well defined step in nonequilibrium situations.

In the outer region, far from steps, the phase fieldf lies
in a ~stable! minima of the energy densityf. The coverage
uout then obeys

] tu
out5D¹2uout1VF2

uout

t
, ~30!

which is equivalent to Eq.~1!. In the vicinity of a step, the
outer field is expanded as

uout~h,s!5u0
out~h,s!1Wu1

out~h,s!1W2u2
out~h,s!1•••,

~31!

fout~h,s!5f0
out~h,s!1Wf1

out~h,s!1W2f2
out~h,s!1•••.

~32!

Matching of the inner expansion ath→` with the outer
expansion atr→0 leads to the following conditions:

lim
h→6`

u0
in5u06

out, ~33!

lim
h→6`

]hu0
in50, ~34!

lim
h→6`

u1
in5u16

out1~h2h̄ !] ru06
out, ~35!

lim
h→6`

]hu1
in5] ru06

out, ~36!

lim
h→6`

]hhu1
in50, ~37!

where the index6 on the rhs indicates that the lim
lim

r→06
was taken.h̄ is an arbitrary constant which define
02160
-
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the position of the interface to first order. We have writt
only the relations that will be needed. Similar matching
lations hold forf. The reader should refer to Ref.@13# for a
derivation of the above matching conditions.

2. Zeroth order

The indexin will be omitted in the following. To leading
order, Eq.~27! reads

]h@M0 ]hu0#50. ~38!

Integrating this equation, one getsM0 ]hu05A0 a constant.
From the matching condition~34!, we must haveA050. As
a consequence,u05 ū0 is a constant. To this order, the evo
lution equation of the phase field Eq.~24! leads to

]hhf02 f f
0 1l~ū02ueq!gf

0 50, ~39!

where f 0 meansf evaluated atf5f0. Equation~39! is eas-
ily solved using an analogy with point mechanics in a on
dimensional potential.f and h correspond to position and
time, respectively. The particle of unit mass moves in
potential2 f 1l( ū02ueq)g. It has to go from a maxima o
the potential to the other, with vanishing initial and fin
velocities to agree with the matching conditions~34!. If we
chooseg such that

g1
0 2g2

0 5@g0#2
1Þ0, ~40!

the only solution isū05ueq ~for which the maxima have the
same height!, and

]hhf02 f f
0 50. ~41!

This equation has localized ‘‘kink solutions’’f0, going from
one minima off to the next one. The width of this kink is;1
in h coordinate, which corresponds to a widthW in physical
coordinates. By definition, these kinks are the steps.

3. First order

The subdominant contribution in the diffusion equatio
Eq. ~27!, reads

]h@M0 ]hu1#1V ]hf0 hf
0 50, ~42!

which leads, after two integrations1 with respect toh, to

u152VE
0

h
dh8

h0

M01A1E
0

h
dh8

1

M0 1B1 , ~43!

whereA1 and B1 are constants. Since lim
h→1`

]hhu150,

taking the limith→` in Eq. ~43! leads to

lim
h→1`

u15Y111hZ11 , ~44!

1Matching after only one integration is sufficient to derive ma
conservation, but for the sake of clarity, the complete matching
postponed to later in the derivation.
4-5
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whereY11 andZ11 are constants that depend onA1 andB1.
From the matching conditions, Eq.~35!, we have Y11

5u11
out2h̄ ] ru01

out andZ115] ru01
out . Similar relations may be

written on the 2 side: Y125u12
out2h̄ ] ru02

out and Z12

5] ru02
out . Thus, we have four relations.

On the other hand, Eq.~28! to first order reads

]hhf12f1f ff
0 52lu1gf

0 2~aV1k!]hf0 . ~45!

Differentiating Eq. ~41! with respect toh, one finds that
]hf0 is a solution of the homogeneous part of Eq.~45!. The
solvability condition~Fredholm alternative! thus leads to a
fifth relation:

E dh ]hf0@lu1gf
0 1~aV1k!]hf0#50. ~46!

With these five equations, we eliminate the two constantsA1

andB1 and obtain three relations between the quantitiesu16
out

and] ru06
out . One of them accounts for global mass conser

tion:

V5
21

@h0#2
1~D ] ru01

out2D ] ru02
out!. ~47!

Choosing@h0#2
15h1

0 2h2
0 521, Eq. ~7! of the discontinu-

ous model is retrieved. Since it corresponds to a higher o
contribution inW, the termV(u12u2) is absent here.

Two other equations account for the kinetic bounda
conditions. Sinceu06

out5ueq , one hasWu16
out5u6

out2ueq , to
leading order. We then find on the1 side

~u1
out2ueq!2j ] ru1

out5Wk
21

l@g0#2
1E dh~]hf0!2

1WVF 2a

l@g0#2
1E dh~]hf0!2

2
1

@g0#2
1E dh

~g02g2
0 !~h02h1

0 !

M0 G
1D ] ru1

outF E
0

1`

dhS 1

M0 2
1

D D
1

1

@g0#2
1E dh

g02G0

M0
G , ~48!

where G05g1
0 when h.0 and G05g2

0 when h,0. We

have also definedj5Wh̄. On the2 side to first order
02160
-
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~u2
out2ueq!2j ] ru2

out5Wk
21

l@g0#2
1E dh~]hf0!2

1WVF 2a

l@g0#2
1E dh~]hf0!2

2
1

@g0#2
1E dh

~g02g1
0 !~h02h2

0 !

M0 G
1D ] ru2

outF2E
2`

0

dhS 1

M0 2
1

D D
1

1

@g0#2
1E dh

g02G0

M0 G . ~49!

These equations are identical to the kinetic boundary co
tions, Eqs.~12!, to leading order in (u2ueq). We then obtain
a set of equations that relates the parameters of the dis
tinuous model (ñ6 ,b̃,ueqG) to the functions (f ,g,h,M ) of
the phase field model. These relations impose that

h05~12x!ueq

M0

D
2

g0

@g0#2
11h

*
0 , ~50!

whereh
*
0 is a function off, which must satisfy

E
2`

1`

dh
h
*
0

M0 50. ~51!

Following the same arguments as in Ref.@14#, we show in
Appendix B that Eq.~50! corresponds to a variational phas
field model at thermodynamic equilibrium only ifx51 and
h
*
0 50. The model withx50 does not correspond, in gen

eral, to a variational phase field model at equilibrium.
Let us now define the surface excess of a quantityQ as

~Q!j5E
2`

j

dr~Q2Q2!1E
j

1`

dr~Q2Q1!, ~52!

whereQ65 lim
h→6`

Q. The general solution then reads

1

ñ1

5
21

@g0#2
1F2

1

D
~g0!j1WE dhS 1

M0 2
1

D D ~g2
0 2g0!G ,

~53!

1

ñ2

5
21

@g0#2
1F 1

D
~g0!j1WE dhS 1

M0 2
1

D D ~g02g1
0 !G ,

~54!

b̃5
21

@g0#2
1F ~12x!

ueq

D
~g0!j1~a2a* !

W

l E dh~]hf0!2G ,
~55!

ueqG5
2W

l@g0#2
1E dh~]hf0!2, ~56!

where
4-6
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a* 5
2l@g0#2

1

E dh~]hf0!2
F 1

~@g0#2
1!2E dh

~g1
0 2g0!~g02g2

0 !

M0

1
1

@g0#2
1E dhS g02

g1
0 1g2

0

2 D h
*
0

M0G . ~57!

We have obtained fast attachment-detachment kinetics:n6

;1/W. Since b̃;W, we also findn0;1/W. Note that b̃
vanishes for an appropriate choice ofa. The terms propor-
tional to a and a* in Eq. ~55! come from, respectively, the
finite relaxation time of the phase field and the finite diff
sion constant in the step region. Note that the kinetic coe
cients can be positive or negative.

4. Invariance of the kinetic boundary conditions when changing
the interface reference point

Physical observations do not depend on the definition
the interface positionj. Nevertheless, kinetic coefficients i
Eqs. ~53!–~55! explicitly depend onj via surface excess
quantities (g)j . This apparent paradox may be solved wh
looking carefully at the boundary conditions.

Let us first perform a change of the reference point in
boundary conditions of the discontinuous model. We w
the concentration profile on the terraces to be invari
within this change of reference. Therefore, the concentra
at the boundaries must transform as follows:

u6
(1)5u6

(2)2Dj ] ru6
(2)1o„~Dj!2

…, ~58!

where indices~1! and~2! correspond to two different choice
of interface atj1 or j2 with j22j15Dj. The first-order
expansion in Eq.~58! is valid if Dj!,c , where ,c is a
cutoff related to the diffusion of atom on terraces@e.g., the
distance between steps or the desorption lengthxs
5(Dt)1/2]. In the kinetic boundary conditions of the disco
tinuous models Eq.~12!, with referencej1, we perform the
substitution, Eq.~58!. The obtained relations can be rewritte
in the form of the usual boundary conditions, Eqs.~12!, with
referencej2, and with new kinetic coefficients:

1

ñ1
(2)

5
1

ñ1
(1)

1
Dj

D
, ~59!

1

ñ2
(2)

5
1

ñ2
(1)

2
Dj

D
, ~60!

b̃ (2)5b̃ (1)1
Dj

D
ueq~12x!. ~61!

Since it is not a kinetic quantity,ueqG is invariant under
interface redefinition. The conditions under which such a
writing is possible are
02160
-

f

n

e
t
t
n

-

ñ6@V,

Dj!
1

k
,

D

ñ6

!,c . ~62!

One may then easily check that the kinetic coefficients
the thin interface limits Eqs.~53!–~55!, obey the transforma-
tion rules, Eqs.~59!–~61!. Indeed, in the frame of the thin
interface asymptotics, conditions~62! are fulfilled: one has
ñ6;D/W@V, Dj;W!1/uku, andD/ ñ6;W!,c . Hence,
we have shown that the transformation rules obeyed by
kinetic coefficients obtained from the thin interface lim
leaves the physical behavior of the steps invariant wh
changing the step reference pointj.

C. Sharp interface asymptotics

In the sharp interface asymptotics@13,7#, the coupling
constant is smalll;W. This leads to the same result as t
thin interface asymptotics to zeroth order. To first order,u1

has to be replaced byū02ueq in the solvability condition,
Eq. ~46!. The resulting boundary condition,

l@g0#2
1~ ū02ueq!1W~av1k!E dh~]hf0!250, ~63!

corresponds to the case of perfect transparency, Eq.~17! @an
additional equation for mass conservation can be retrie
by integrating Eq.~43! only once with respect toh]. It is
important to note that a variable mobility does not affect t
final result. Comparing Eqs.~17! and ~63!, one obtains the
following relations:

b52a
W

l@g0#2
1E dh~]hf0!2, ~64!

Gueq5
2W

l@g0#2
1E dh~]hf0!2. ~65!

The attachment kinetic coefficients are not large anymo
Within the sharp interface asymptotics, attachment kinetic
finite @i.e., b;O(1)], and steps are perfectly transpare
n0@n1 ,n2 . As mentioned in Sec. II B, the kinetic asymm
try at steps~Ehrlich-Schwoebel effect! is irrelevant in this
limit.

We also notice the absence of surface definition dep
dent terms@containing (g)j] in the sharp interface asympto
ics. These terms now lead to higher order contributions.

D. Domain of validity of the expansions

For the thin interface asymptotics to be valid, four con
tions should to be fulfilled@14#:

ukuW!1, ~66!
4-7
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WV

D
!1, ~67!

l~u2ueq!!1, ~68!

tpV

W
!1. ~69!

Furthermore, one has

ñ6;
D

W
, ~70!

i.e., attachment kinetics is fast. This is, nevertheless, not
case in many situations of physical interest@15#. In Sec. IV,
we will present a simple way to avoid this limitation.

The results of the sharp interface asymptotics can be
trieved by taking the limitl;W in the results of the thin
interface asymptotics. One indeed retrieves Eq.~64! from
Eq. ~55! in the limit a* ;l;W!a. This condition may be
rewritten asl!Dtp /W2, and together with Eq.~65!, im-
plies thatueqG@W3/(Dtp) in the sharp interface asympto
ics, which is the condition obtained in Ref.@14#.

E. Numerical simulations

In this section, the full numerical solution of the 2D pha
field model ~23! and ~24! is presented. Since it has riche
dynamics, we here focus on the thin interface asympto
only. The reader interested in a comparison of the sharp
terface asymptotics with a numerical solution of the ph
field equations may refer to Ref.@20#.

1. Step velocity

The velocity of a step in a periodic vicinal train was us
as a first quantitative check of step kinetics. In order to fo
periodicity, one step only is used in a box which is period
along the step and screw periodic in the direction perp
dicular to steps. We have used the nonperiodic two-w
phase field model explicitly defined in Appendix C.~We
have made some checks, with a periodic model, with sev
steps. We have also varied the lateral extent of the steps.
does not change the results.! We use the following param
eters of the step model:VF51022, t2151021, D51,
ueq51022, G51, and the distance between steps is,55.
All results are in dimensionless units, which must be
scaled in order to retrieve the physical units. Using 102 Å
and 104 s as spatial and temporal units, this simulation c
responds typically to growth of Si~111! at high temperature
@21#, where significant desorption is present.

We first usedn050 and vary the value ofd15d2 . For
W50.2, the numerical integration with a simple Eul
scheme was seen to converge forW/dx54 and dt
5531022. The variation of the relative error on the ste
velocity, given the step model, is plotted as a function
d15d2 in Fig. 3. The results confirm condition~70!, and
show that the error is less than 1% whend1 /W'1 and less
than 15% whend1 /W'50.
02160
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Sincel;W/(Gueq) andu2ueq;bv during growth, con-
ditions ~68! and ~69! may be combined and read

S W

D
1b D Wv

Gueq
!1, ~71!

where we have used thattp;W2a* /D;W2l/D
;W3/(DGueq). The behavior of the velocity when varyin
G is plotted in Fig. 4. As predicted by Eq.~71!, the conver-
gence to the thin interface asymptotics breaks down w
condition ~71! is not fulfilled anymore.

The velocity of steps on a vicinal surface as a function
the distance between steps is plotted in Fig. 5. Good ag
ment with the prediction of the sharp interface model is o
served.

FIG. 3. Step velocity in the absence of Ehrlich-Schwoebel
fect: d25d1 , and without transparencyn050, as a function of the
attachment lengthd1 /W. Relative error on the step velocity as
function of value of the attachment lengthd1 /W.

FIG. 4. Convergence of the velocity when varyingG. Two cases
are considered:d50.1 ~squares! and d510 ~circles!. The value
predicted by the thin interface asymptotics is shown in both ca
The convergence criterion of Eq.~71! readsG@0.15 andG@1.0
whend50.1 andd510, respectively.
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2. Linear stability analysis

The consequences of the Ehrlich-Schwoebel effect on
face dynamics vanish whenn6 are large. Since this is in fac
the domain of validity of the thin interface asymptotics, t
accuracy of the Ehrlich-Schwoebel effect at the steps is
easy to probe. Nevertheless, due to the advances in vis
ization techniques and in the atomic control of the surface
is nowadays possible to measure consequences of s
Schwoebel effects. A recent example is the experimental
covery of a tiny Schwoebel effect on the Si~111! surface
using island electromigration@5,22#.

Here, we focus on the meandering instability at ste
which is directly proportional to the Ehrlich-Schwoebel e
fect @19#. The amplification rate is measured via the increa
of the amplitude of a sinusoidal meander of fixed wavelen
lm . We consider the in-phase mode, which is the most
stable mode, where all steps have the same meander. T
only one step, with periodic boundary conditions in the
rection perpendicular to the step, is needed. A rectang
grid is used, which is useful in the long wavelength limit
account for three separate length scales:W!,!lm . We
have used the parametersW50.1, VF51024, t2151024,
ueq51022, G51, D51, d150.05, d250.6, n050, ,
55. The step velocity expected from the step model is th
V54.9431024, and the velocity of steps found from th
numerical solution of the phase field model isV
54.93431024 whendx5531022 anddt5231024.

The amplification rate is plotted in Fig. 6 as a function
q52p/lm . The accuracy is better than 10%. Note that
have chosen parameters that obey constraint~70!.

A periodic model defined in Appendix C 2 was tested a
leads to qualitatively similar results.

IV. PHASE FIELD MODEL WITH ONE CONCENTRATION
FIELD PER TERRACE

A. Model equations for one step

In the presence of strong Ehrlich-Schwoebel@15# effect
during growth or, in general, when kinetics is slow, a fin

FIG. 5. Step velocity in a train of steps with one concentrat
field. The symbols are results of the numerical solution of the ph
field. The solid lines correspond to the nonquasistatic predictio
the discontinuous model and the dashed lines to the quasistati
lution.
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concentration jump may appear at the step. This situa
cannot be tackled by a phase field model with one glo
concentration field. Indeed, in the sharp and thin interfa
limits of this model, the concentration jump at the step m
be small. In this section, a phase field model whose sh
interface asymptotics is consistent with a finite concentrat
jump at the step is presented.

Going back to some more microscopic considerations
extreme Ehrlich-Schwoebel effect corresponds to the c
where the adatoms on the upper terrace in the vicinity o
step cannot attach to the step or go to the lower terrace, t
adatoms behave as a phase which is disconnected from
lower terrace. To deal with such an extreme case, it is nat
to consider that the concentration on both sides of the s
correspond to two different fields. A phase field model w
one concentration field on each terrace is therefore prese
in this section. We will first focus on an isolated step. T
case of a vicinal surface will be analyzed later.

We now want a continuum concentration that sits on o
side of the step and which is zero on the other side. The
fore, the concentration has to relax to the formu5u0c,
wherec is a smooth function of the phase fieldf, with c
50 on one side of the step andc51 on the other side.
Instead of being proportional to the concentration gradi
“u, the diffusion flux is now proportional to the Wronskia
of u andc:

Jd;“

u

c
;@c“u2u“c#. ~72!

In the step region, the concentrations on the upper and lo
terraces are coupled by mass exchange with kinetic co
cientsB66 . We have chosen the index1 for lower side of
the step, andc is denoted byf1 on this side. The index

e
f

so-

FIG. 6. Dispersion relation: growth rate of the meand
uRe@ iv#u as a function of the wave vector. The solid line is th
quasistatic prediction from the discontinuous model. The squa
indicate the result from the numerical solution of the phase fi
model with one concentration field whenx51. The circles and
triangles indicate the numerical solution of the phase field mo
and the nonquasistatic prediction of the sharp interface model w
x50.
4-9
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2 designates the upper side of the step. Mass conserva
now reads for both terraces:2

] tu11] th15D@f1¹2u12u1¹2f1#2
1

t
~u12u1

` !

2~B11u12B12u2!, ~73!

] tu21] th25D@f2¹2u22u2¹2f2#2
1

t
~u22u2

` !

2~B22u22B21u1!, ~74!

wheret, u6
` , andB66 are functions off. Another equation

is needed to determine the dynamics of the phase field it

tf ] tf5W2¹2f2 f f1l@g1f~u12ueqf1!

1g2f~u22ueqf2!#, ~75!

where the coupling term~in brackets! comes from a direct
analogy to Eq.~19!. g6 are to be chosen to ensure that n
ther the position nor the sharpness~curvature! of the minima
of f are changed by the coupling term.

B. Sharp interface asymptotics

1. Expansion of the model equations

Following the same trend as in Sec. III, let us define
inner region as the location of rapid variations off andu. In
this region, Eqs.~73!–~75! are expanded for smallW. In
order to obtain the correct far-field limit, one needs

lim
h→2`

B6250, ~76!

lim
h→1`

B6150, ~77!

lim
h→6`

u6
` 5VtF[u`. ~78!

Moreover, we chooseB;u“fu. This leads toB5DN/W,
where N is of the order of 1. Let us call,c the smallest
macroscopic cutoff length associated with the diffusion fie
Our small parameter is once againe5W/,c , and we define
the inner variableh as previously. We now rescale a
lengths by,c ~which amounts to take,c51 in all equations
ande5W). Expanded up to first order, the phase field eq
tions, Eqs.~73!–~75!, read

~]h1Wk!@f1 ]hu12u1 ]hf1#2W~N11u12N12u2!

1
WV

D
]h~u11h1!5o~W2!, ~79!

2The diffusion terms in brackets are easily generalized to the c
of a nonconstant mobility. This leads to a term of the fo
“@M1(f1“u12u1“f1)#. Since the variations of the mobili
ties M6 do not affect the sharp interface asymptotics presente
the following, we do not consider this generalization.
02160
ion

lf:
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~]h1Wk!@f2 ]hu22u2 ]hf2#2W~N22u22N21u1!

1
WV

D
]h~u21h2!5o~W2!, ~80!

]hhf2 f f1l@g1f~u12ueqf1!1g2f~u22ueqf2!#

1W~aV1k!]hf5o~W2!. ~81!

2. Zeroth order

To zeroth order, Eqs.~80! and ~79! provide

f2
0 ]hu202u20 ]hf2

0 5B02 ,

f1
0 ]hu102u10 ]hf1

0 5B01 , ~82!

where B06 are constants. From matching condition
]hu0 ,]hf0→0 whenh→6`. Thus,B0650, and

u205 ũ20f2
0 ,

u105 ũ10f1
0 , ~83!

where ũ60 are arbitrary constants. From the matching co
ditions ~33!, ũ065u06

out .
To leading order, Eq.~81! reads

]hhf02 f f
0 50. ~84!

This equation is once again analogous to the sine-Gor
equation. It has solitonlike kink solutions~the steps! going
from one minima off to the next one. Note that using th
thin interface asymptotics here is not appropriate. Inde
this would requireu065ueqf6 , which is just what we want
to avoid. The sharp interface asymptotics is the adap
choice because it leavesu06

out undetermined.

3. First order

The relevant information for dynamics appears to first
der. Equation~80! now reads

]h@f2
0 ]hu122u12 ]hf2

0 1f1f2f
0 ]hu02

2u02 ]h~f1f2f
0 !#2~N22

0 u022N21
0 u01!

1
V

D
]h~u021h2

0 !50. ~85!

From Eqs.~76! and ~77!, one has lim
h→6`

N2650. Thus,

taking the limit h→6` in Eq ~85! leaves ũ06 undeter-
mined. Equation~85! is integrated with respect toh. One
finds

se

in
4-10



t-

s

-
ng
e

d

he
ity

ould
ua-

s a
ous
en

ld
rary

PHASE FIELD MODELS FOR STEP FLOW PHYSICAL REVIEW E68, 021604 ~2003!
f2
0 ]hu122u12 ]hf2

0 1f1f2f
0 ]hu022u02 ]h~f1f2f

0 !

2F ũ02S E
1`

h
dhN22

0 f2
0 D 2 ũ01S E

1`

h
dhN21

0 f1
0 D G

1
V

D
~u021h2

0 2h21
0 !5B1 . ~86!

Here, h215 limh→1`h2. In the limit whereh→1`, one
has ]hf0→0 from matching conditions. Hence, the lef
hand side of Eq.~86! is zero. Therefore,B150. Sincefout is
constant in the outer space, one has]hf1→0 ash→2`.
Thus, one finds the kinetic boundary condition

D ]hu121v ũ025V@h2
0 #2

11F ũ02S DE
1`

2`

dh N22
0 f2

0 D
2 ũ01S DE

1`

2`

dhN21
0 f1

0 D G , ~87!

which may be written as a condition equivalent to Eq.~18!

D ] ru02
out1Vu02

out5~a211ueqx!V1n~u01
out2u02

out!,
~88!

provided that

n5DE
2`

1`

dh N22
0 f2

0 5DE
2`

1`

dh N21
0 f1

0 , ~89!

12a52@h2
0 #2

11xueq . ~90!

Using the same method for the other side of the step lead

D ] ru01
out1Vu01

out5~a1xueq!V1n~u01
out2u02

out!, ~91!

where we have used

n5DE
2`

1`

dh N12
0 f2

0 5DE
2`

1`

dh N11
0 f1

0 , ~92!

a52@h1
0 #2

12xueq . ~93!

Combining Eqs.~90! and ~93!, we find

@h11h2#2
1521, ~94!

which is expected sinceh11h2 is interpreted as the concen
tration of solid in the layer bounded by the step. Followi
the same line as for the phase field model, with one conc
tration field, Eqs.~90! and ~93! show that the phase fiel
model Eqs.~73! and~75!, is variational at equilibrium only if
x51. This analysis is performed in detail in Appendix B.

In order to recover the third boundary condition of t
discontinuous model, let us first note the formal similar
between the first order contributions in Eqs.~81! and ~84!
differentiated with respect toh

]hh~]hf0!2 f ff
0 ]hf050, ~95!
02160
to

n-

]hhf12 f ff
0 f15

l

W
@g1f

0 ~u012ueqf1!

1g2f
0 ~u022ueqf2!#

2~av1k!]hf0 . ~96!

The solvability condition~or Fredholm alternative! then in-
dicates that the right-hand side of the second equation sh
be orthogonal to the the solution of the homogeneous eq
tion:

E dh ]hf0F l

W
@g1f

0 ~u012ueqf1!1g2f
0 ~u022ueqf2!#

2~aV1k!]hf0G50. ~97!

The integration provides

S E df g1f
0 f1

0 D ~ ũ012ueq!1S E df g2f
0 f2

0 D ~ ũ022ueq!

2
W

l
~aV1k!E dh~]hf0!250. ~98!

Comparing this equation to the boundary condition, Eq.~19!,
three relations are obtained:

a5
1

GE df g1f
0 f1

0 512
1

GE df g2f
0 f2

0 , ~99!

b5
aW

lG E dh~]hf0!2, ~100!

Gueq5
W

lGE dh~]hf0!2, ~101!

where

G5E df~g1f
0 f1

0 1g2f
0 f2

0 !. ~102!

In summary, the sharp interface asymptotics provide
link between the phase field model and the discontinu
model. The coefficients of the boundary conditions are giv
by Eqs.~89!, ~90!, ~92!, ~93!, ~99!, ~100!, and ~101!. Since
none of these parameters scale withW, the sharp interface
limit of the phase field model with one concentration fie
per terrace leads to a discontinuous step model with arbit
kinetics. Note that combining Eqs.~100! and~101!, the step
diffusion constant is found to be equal to@5#

1

a
5

W2

tf
5~n11n2!Gueq5

Gueq

b
. ~103!
4-11
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C. More than one step

A direct extension of the previous model to the case o
surface with an arbitrary number of steps is to use one c
centration field per layer. The set of model equations wo
then be written as

] tun1] thn5D@cn¹2un2un¹2cn#1
1

t
~un

`2un!

2@un~B11
n 1B22

n !2un21B21
n 2un11B12

n #,

~104!

where hn , cn , and B 66
n are smooth functions off. hn

5h1 close to the upper step at the edge of the terrace
heightn andhn5h2 in the vicinity of the lower step.cn is
equal to one on thenth terrace and zero elsewhere. An ad
tional equation determines the dynamics of the phase fi
itself

tf ] tf5W2¹2f2 f f1lW(
n

gnf~un2ueqcn!,

~105!

wheregnf is a function off. The sharp interface asympto
ics of this model around one step is the same as what
presented in the preceding section. Therefore, model e
tions~104! and~105! correspond to a stepped surface with
arbitrary number of steps.

D. Numerical simulations

1. Three fields model

On a stepped surface, a large number of concentra
fields might be numerically difficult to handle. We present
this section a trick to avoid this unlimited number of conce
tration fields. The idea is simple. We only use two conc
tration fields, each one is used for every other terrace.
model equations now read

D@f1* ¹2u12u1¹2f1* #1~B11* u12B12* u2!

1
1

t
~u1*

`2u1!5] tu11] th1* , ~106!

D@f2* ¹2u22u2¹2f2* #1~B22* u22B21* u1!

1
1

t
~u2*

`2u2!5] tu21] th2* , ~107!

W2¹2f2 f f2lW@g1f* ~u12ueqf1* !1g2f* ~u22ueqf2* !#

5tf ] tf, ~108!

where quantities with ‘‘* ’’ change value from one step to th
other, e.g.,

fs* 5
11z

2
fs1

12z

2
f2s , ~109!
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Bs1 ,s2
* 5

11z

2
Bs1 ,s2

1
12z

2
B2s1 ,2s2

, ~110!

wheres,s1 ,s2561. z561 is a periodic function off,
whose period is two times that of the periodic potentialf. z
changes sign each timef goes through a minimum off
~which corresponds to a terrace!. u6*

` andh6* also obey Eq.
~109!. Explicit examples are given in Appendix D. Onc
again, the sharp interface asymptotics of this model aro
one step is clearly the same as that presented in the ca
an isolated step.

A numerical solution of the three fields model was pe
formed using a simple Euler scheme in time and seco
order finite differences in space, with time stepdt and grid
lattice unitdx. The model parameters are that calculated
Appendix D 1 b. The equations were solved on a rectang
lattice, where the lattice parameter along the average
direction is adjusted to the numerical needs.

2. Step velocity

We first check the velocity of straight steps on a g
having a few points in the directionx along the step and 101
points in the other direction. We have checked that chang
the number of points in the lateral direction does not aff
the result~when steps are stable with respect to meanderin!.
We have also checked that the number of steps in a reg
vicinal surface does not affect the velocity~when the surface
is stable with respect to step bunching!.

The first result that we have checked is the agreemen
the step velocity with the prediction of the discontinuo
model as a function of the kinetic coefficients. As shown
Fig. 7, quantitative agreement is found over five orders
magnitude. We have also checked the saturation of the
velocity when the interstep distance is larger than the des
tion lengthxs5ADt ~see Fig. 8!. We find very good agree
ment with the nonquasistatic prediction of Appendix E. Mo

FIG. 7. Same as Fig. 3, but using the phase field model with
concentration field per terrace. Parameters:W51, VF51023, D
51, n050, ueq51025, G5104, t2151023 ~circles!, and t21

51022 ~squares!.
4-12
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els A andB lead to identical results.
The consequences of the Ehrlich-Schwoebel effect on

velocity were then checked. Once again, good agreeme
found with the predictions of the discontinuous model~see
Fig. 9!.

Transparency also affects step velocity. As shown in F
10, varying the kinetic coefficientn0 affects the velocity of a
straight step, in agreement with discontinuous model pre
tions.

3. Linear stability analysis

The dispersion relation of the in-phase meander of a t
of steps in the presence of Ehrlich-Schwoebel effect was
studied. The growth rate corresponding to a given wa
length is calculated by fitting the evolution of the amplitu
of a small sinusoidal perturbation. The results are plotted
Fig. 11. Quantitative agreement is found at long wa
lengths. A deviation at short length scales was seen. T
deviation vanishes asW gets smaller. From this result, w
conclude that kinetics is taken into account for relative

FIG. 8. Same as Fig. 5, but using the phase field model with
concentration field per terrace. Parameters:W51, VF51023, D
51, n1

2150.1, n2
21539.9, n050, ueq51025, G51024, t21

51023 ~circles!, andt2151022 ~squares!.

FIG. 9. Step velocity as a function of the asymmetry in atta
ment kinetics 2a21, with n1

211n2
21540. Phase field model with

one concentration field per terrace. Parameters:W51, VF
51023, t2151022, D51, n050, ueq51025, G5104, ,520.2.
02160
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large values ofW. Nevertheless, sharper interfaces a
needed for an accurate description of line tension.

To check the bunching rate, we restricted the analysis
step pairing: the increase or decrease of a perturbation o
position of one step in a box with two initially equidistan
steps was measured. This corresponds to the modew5p in
the dispersion relation~see Appendix E!. The results of the
phase field model during growth and sublimation are
quantitative agreement with the discontinuous model,
shown in Fig. 12.

4. Nonlinear dynamics

We now focus on the behavior of the step meander in
nonlinear regime. It was shown from multiscale analysis@3#
that step meander should exhibit spatiotemporal chaos in
presence of significant desorption and close to the instab
threshold. This result is confirmed by our simulations,
shown in Fig. 13.

e

-

FIG. 10. Step velocity as a function of step transparency. Ph
field model with two concentration fields. Same parameters a
Fig. 9, with n0 varying anda50.995.

FIG. 11. Growth rate of in-phase step meander in the lin
regime, as a function of the wave vector. Same parameters as in
7, but with t2151026. Circles correspond toW51 and x50,
squares toW50.5 andx50, and triangles toW50.5 andx51.
4-13
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V. CONCLUSION

In this paper, we have first discussed the discontinu
step model. Several reformulations of the boundary con
tions at the steps were presented. The limit of perfect s
transparencyn0→` was shown to correspond to kinet
boundary conditions used in solidification. Moreover, s
transparency may be incorporated in the step model a
correction to the equilibrium concentration due to step m
tion. The general stability analysis of a vicinal surface dur
growth was performed within the framework of the disco
tinuous model.

FIG. 12. Pairing rate as a function ofa ~i.e., the Ehrlich-
Schwoebel effect!, with n1

211n2
21540. Circles correspond tox

50 and triangles tox51. Parameters:W51, VF51024, t21

51026, D51, n050, ueq51025, G5104, ,530.15.

FIG. 13. Full numerical solution of the 2D phase field mod
with Ehrlich-Schwoebel effect and significant desorptio
Kuramoto-Sivashinsky-like chaos of the meander of an isola
step. The front is presented at different times. Time units are a
trary. Parameters areW50.3, G5103, VF5231022, ueq

51025, t51, D51 n1
2150.1, n2

21520, dt51022, dx50.2. The
supersaturation is defined ass5Ft/ceq21. The critical super satu
ration for the morphological instability to appear issc52.33103,
the simulation is performed withs553103.
02160
s
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p

p
a
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g
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A phase field model with one global concentration fie
was then studied. We have performed thethin interface as-
ymptotics, where the departure from equilibrium at the inte
face is chosen to be smalla priori. This leads to a discon
tinuous model with fast kinetics~Indeed, fast kinetics is
needed in order to keep the smallness of the departure f
equilibrium at the interface!. Since kinetics is fast, the inter
face definition appears explicitly in the expression of t
kinetic coefficients. This dependence is consistent with
independence of step dynamics with respect to a chang
the interface reference point. Thus, as opposed to Ref.@12#,
we have well defined kinetic coefficients, even in the case
fast kinetics. The numerical simulation of the phase fie
model is in agreement with the predictions from the disco
tinuous model. But the Schwoebel effect is difficult to pro
due to fast kinetics. Thesharp interface asymptoticsis an
expansion in the weak coupling limit. It therefore leads to
discontinuous model with strong step transparency.

We have finally shown that a model with one concent
tion field per terrace allows one to recover arbitrary s
kinetics, i.e., arbitrary strong Erhlich-Schwoebel effect a
step transparency. The numerical simulation of this ph
field model is in quantitative agreement with the predictio
of the discontinuous model over at least five orders of m
nitude of variation of the kinetic coefficients. The occurren
of chaos, predicted from a multiscale analysis of the disc
tinuous model for an isolated step during growth with s
nificant desorption was checked.

The kinetic boundary condition with equilibrium refe
ence state (x51) was found to be the only one that corr
sponds to variational dynamics at equilibrium in both typ
of phase field models. Thus, the model with adatom vacu
reference state (x50) does not seem to be thermodynam
cally consistent.

To the best of our knowledge, the phase field model w
one concentration field per terrace is a new model. T
model may be relevant for heteroepitaxy: a straightforw
generalization is obtained by choosing a diffusion constan
the adatoms that depends on the layer where they are loc
This may be relevant for solidification when diffusivities
the solid and liquid phases are different. Indeed, this wo
avoid incorporating nonvariational additional terms in t
phase field model@23#.

More generally, the phase field model with Wronski
diffusion flux, Eq.~72!, is a powerful method to treat diffu
sion problems in a domain limited by moving boundaries
in problems of diffusive relaxation to a field which depen
on space and time.

As natural perspective for this work, an analysis of st
collision, annihilation, and nucleation dynamics would co
plete a full description of a growing crystal surface.
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APPENDIX A: VARIABLE EQUILIBRIUM
CONCENTRATION

The equilibrium concentrationueq is, in general, not con-
stant in the vicinity of the step region. Nevertheless,ueq has

l
.
d
i-
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to be constant far from the step~here, we neglect any long
range interactions—such as the ones of elastic origin!. The
modified phase field model with af-dependent equilibrium
concentration reads

] tu5“FM“S u2ueq

C D G1VF2
u

t
2] th, ~A1!

tp ] tf5W2¹2f2 f f1lS u2ueq

C Dgf , ~A2!

with C5ueq / ūeq , whereūeq is the value ofueq far from the
step. Using a similar expansion as for the model with c
stant equilibrium concentration, one finds a result similar
that of Sec. III. The main point is that the solid referen
concentration must be replaced by a generalized refere
concentrationh1ueq . Thus, the expression of the kinet
coefficients ~53!–~57! is unchanged, except that we no
have a new condition,

h01ueq
0 52

g0

@g0#2
11~12x!ūeq

M

D
1h* , ~A3!

which replaces Eq.~50!, whereh* must satisfy relation~51!.

APPENDIX B: VARIATIONAL CHARACTER
OF THE PHASE FIELD MODELS

AT THERMODYNAMIC EQUILIBRIUM

1. Model with one concentration field

Let us start with the energy functional

F5E dxFW2

2
~“f!21 f 1

lūeq

2ueq
~u2ueq!

2G , ~B1!

wheredx is the surface element,ueq is a function off, and
ūeq is the constant value ofueq far from the steps. We now
define the total concentration~i.e., adatom gas plus solid!

U5u1h. ~B2!

Suppose that

h52
g

@g#2
1 , ~B3!

up to an arbitrary additive constant. One can then ea
check that, up to higher order terms;(u2ueq)

2, the phase
field model with one concentration field, Eqs.~23! and~24!,
may be written at equilibrium, whenu`5ueq :

l ] tU5“FM“S d F
d U U

f
D G2

1

t

dF
dU U

f

, ~B4!

] tf52
1

tp

d F
dfU

U

. ~B5!
02160
-
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This set of equations then decrease the functionalF over the
course of time. Indeed, up to boundary terms at the fron
of the integration domain, one has

dF
dt

5E dxF ] tf
dF
df U

U

1] tU
d F
d U U

f
G

5E dxF2
1

tp
S dF

df U
U
D 2

2
M

l S“dF
dU U

f
D 2

2
1

tl S dF
dU U

f
D 2G<0. ~B6!

Whenx51, condition~B3! is the same as the constrai
equation~50!, if h* 50. Kinetic boundary conditions with
x51 corresponds to microscopically variational dynamics
thermodynamic equilibrium.

When x50, condition ~B3! and the constraint equatio
~50! are equivalent ifh

*
0 5ueq(12M0/D) and

E dh
1

M0 50. ~B7!

This relation implies a very strong constraintñ152 ñ2 ,
which is not expected in usual systems. In general,ñ1Þ

2 ñ2 , and the phase field model withx50 is not varia-
tional. ~A noteworthy fact is that whenñ152 ñ2 , the
model with x50 is formally equivalent to the model with
x51, where b̃ is simply corrected by a constant:b̃→b̃

2ueq / ñ1 .)

2. Model with one concentration field per terrace

We here consider an isolated step. The generalizatio
an arbitrary number of steps is straightforward. We start w
the energy functional

F25E dxFW2

2
~“f!21 f 1

l

2ueqf1
~u12ueqf1!2

1
l

2ueqf2
~u22ueqf2!2G . ~B8!

Following the same line as in the preceding section, we
fine

U15h11u1 , ~B9!

U25h21u2 . ~B10!

We now propose the relaxation model
4-15
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] tU15“FM 1“
dF2

dU1
U

U2 ,f
G

2CS dF2

dU1
U

U2 ,f

2
dF2

dU2
U

U1 ,f
D 2

1

te

dF2

dU1
U

U2 ,f

,

~B11!

] tU25“FM 2“
dF2

dU2
U

U1 ,f
G

2CS dF2

dU2
U

U1 ,f

2
dF2

dU1
U

U2 ,f
D 2

1

te

dF2

dU2
U

U1 ,f

,

~B12!

] tf52
1

tf

dF2

df U
U1 ,U2

. ~B13!

This model decreases the energy functionalF2. Indeed, up to
negligible terms integrated along the boundary of the in
gration domain, one has

d

dt
F25E dxF ] tf

dF2

df U
U1 ,U2

1] tU1

dF2

dU1
U

U2 ,f

1] tU2

dF2

dU2
U

U1 ,f
G

5E dxF2
1

tp S dF2

df U
U1 ,U2

D 2

2M 1S“ dF2

dU1
U

f,U2

D 2

2M 2S“ dF2

dU2
U

f,U1

D 2

2CS dF2

dU1
U

f,U2

2
dF2

dU2
U

f,U1

D 2

2
1

t S dF2

dU1
U

f,U2

D 2

2
1

te S dF2

dU2
U

f,U1

D 2G<0. ~B14!

Defining

M 15
f1

2 ueq

l
M1 , ~B15!

M 25
f2

2 ueq

l
M2 , ~B16!

C5
ueqf1f2

l
B, ~B17!

te5lt, ~B18!
02160
-

and neglecting second-order terms;(u2ueq)
2, the relax-

ation equations may be rewritten as

] tu11] th15“@M1~u1“f12f1“u1!#

2B~u1f22u2f1!2
1

t
~u12ueqf1!,

~B19!

] tu21] th25“@M2~u2“f22f2“u2!#

2B~u2f12u1f2!2
1

t
~u22ueqf2!,

~B20!

tf ] tf5W2¹2f2 f f1lF ~h1f1ueqf1f!S u1

ueqf1
21D

1~h2f1ueqf2f!S u2

ueqf2
21D G . ~B21!

Comparing to the model in the main text Eqs.~73!–~75!, we
see that some conditions are needed for the phase field m
to be variational at equilibrium~i.e., whenu6

` 5ueqf1):

B115B215Bf2 , ~B22!

B215B225Bf1 , ~B23!

g1fueqf15h1f1ueqf1f , ~B24!

g2fueqf25h2f1ueqf2f . ~B25!

Integrating and combining Eqs.~B24! and ~B25!, one finds

E df g1ff1

E df~g1ff11g2ff2!

5
@h1#2

12ueq

@h11h2#2
1

, ~B26!

E df g2ff2

E df~g1ff11g2ff2!

5
@h2#2

11ueq

@h11h2#2
1

. ~B27!

Combining Eqs.~93!, ~90!, ~94!, and~99!, we find that con-
ditions ~B26! and~B27! are verified only whenx51. There-
fore, the phase field model withx51 that verifies conditions
~B22!–~B25! is variational at equilibrium. In contrast, for th
model withx50 no variational formulation was found.

We will end this section with an example of functionsh6

andg6 that obey conditions~B24!–~B25!:

h152@a~4f1
3 23f1

4 !1ueqf1#, ~B28!

h252@2~12a!~4f2
3 23f2

4 !1ueqf2#, ~B29!

g15~23f1
2 12f1

3 !2a/ueq , ~B30!
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g25~3f2
2 22f2

3 !2~12a!/ueq . ~B31!

The four functionsh6 andg6 are defined up to an arbitrar
additive constant.

APPENDIX C: EXPLICIT MODELS WITH ONE
CONCENTRATION FIELD

1. One step

Here, we want to consider one step only, the free enerf
does not have to be periodic, and a simple double well
tential is enough for our purpose

f 52
f2

2
1

f4

4
, ~C1!

g5f2
2

3
f31

f5

5
, ~C2!

D

M
511ms~12f2!1maf~12f2!, ~C3!

and h* 50. The zeroth-order solution forf is f05
2tanh(h/A2). Using Eqs.~53! and ~54!, one finds

ms5
d̃11d̃2

2WA2
, ~C4!

ma5
7

6

d̃12d̃2

WA2
, ~C5!

whered̃65D/ ñ6 , and from Eqs.~56! and ~57!

l5
5

4A2

W

ueq
0 G

, ~C6!

Da*

l
5

209

525
1

80

231
ms . ~C7!

2. A train of steps

A simple explicit model that has the required periodic
is

f 5
1

p
cos~pf!, ~C8!

g5f1
1

p
sin~pf!, ~C9!

D

M
511ms@11cos~pf!#1ma sin~pf!, ~C10!

with h* 50. Now, to zeroth order,f is the solution of a
02160
-

sine-Gordon equation. Once again, Eqs.~53! and~54! lead to

ms5
p1/2

4

d̃12d̃2

W
, ~C11!

ma5
3p3/2

32

d̃12d̃2

W
, ~C12!

and with help of Eqs.~56! and ~57!

l5
4

p3/2

W

u0
eqG

, ~C13!

Da*

l
50.298 2351ms

64

45p
. ~C14!

APPENDIX D: EXPLICIT MODELS WITH ONE
CONCENTRATION FIELD PER TERRACE

1. Model A

A simple choice that satisfies Eqs.~92! and ~89! is

B115B215Bf2 , ~D1!

B225B125Bf1 , ~D2!

with

WE dh Bf1
0 f2

0 5n. ~D3!

A specific choice that satisfies this relation is

f11f251, ~D4!

B56nu“f1u56nu“f2u. ~D5!

The first equation means that the total equilibrium conc
tration ueqf11ueqf2 to be strictly constant, even in th
step region. We then defineh6 andg6 as

h152~a1xueq!f1 , ~D6!

h25@12~a1xueq!#f2 , ~D7!

g15ag, ~D8!

g25~12a!g. ~D9!

a. One step

For one step, the functionsf andg can still be chosen as
Eqs.~C1! and ~C2!. Then, we define

f65
1

2
~17f!. ~D10!

Then, from Eq.~101!
4-17
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l5
5

2A2

1

ueq
0 G

. ~D11!

b. A train of steps

For a train of steps,f andg are defined from Eqs.~C8! and
~C9!. For the three fields model, we then choose

f65
1

2 F16 sinS p

2
f D G . ~D12!

We also definez5sign@cos(f/2)#. The terraces are then de
fined as the regions wheref52n11, wheren is an integer.
The value of the coupling constant is calculated using
~101!:

l5
8

p3/2

1

Gueq
0

. ~D13!

2. Model B

We now want to write down a model where the exchan
term is simply proportional to the concentration differen
(u12u2). To do so, we still use Eqs.~D4! and~D6!–~D9!,
but

B115B2152nu“f1u, ~D14!

B225B1252nu“f2u, ~D15!

Conditions~92! and~89! are then fulfilled. The values of th
coupling constant for one step or for a train of steps are
given by Eqs.~D11! and ~D13!, respectively.

APPENDIX E: STEP VELOCITY AND DISPERSION
RELATION IN THE DISCONTINUOUS MODEL

We consider here the casex50. The calculation for the
casex51 is similar. Moreover, an inspection of Eq.~18!
shows that both cases lead to the same result whenueq
!x(12x).

Let us consider a perfect vicinal surface, i.e., all steps
separated by the same terrace width,. During growth or
sublimation, a steady state exist, where all steps have
same velocity, this is the step flow mode. We define

1

,d
5

V

D
, xs5~Dt!1/2, D5V~tF2ceq

0 !, ~E1!

and the length scales

1

d
5

n

D
5

1

d0
1

1

d11d2
, ~E2!

d5bD5~d1
211d2

21!21, ~E3!

xd5S 1

4,d
2

1
1

xs
2D 21

. ~E4!
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We also define

s5sinh~,/xd!, c5cosh~,/xd!, ~E5!

sd5sinh~,/2,d!, cd5cosh~,/2,d!, ~E6!

and the determinant

D0

2
5

1

dxd
c1

1

dS 1

d
1

2a21

,d
D s1

2

xdd0
~c2cd!. ~E7!

The steady state concentration on both sides of the step r

u012u`5
2

D0
H 2S aD

d
2

u`

,d
D F S 1

2,d
1

12a

d
1

1

d0
D s1

1

xd
cG

2S ~12a!D

d
1

u`

,d
D F 1

xd
e,/2,d1

1

d0
sG J , ~E8!

u022u`5
2

D0
H 2S ~12a!D

d
1

u`

,d
D F S 2

1

2,d
1

a

d
1

1

d0
D s

1
1

xd
cG2S aD

d
2

u`

,d
D F 1

xd
e2,/2,d1

1

d0
sG J ,

~E9!

whereu`5VtF. An equation for the step velocity~or ,d) is
then obtained from mass conservation at the step

D0

d

2,d
5DH F S 1

xs
2 1

1

2,d
D s2

1

xd ,d
sdG1

2

xdd
~c2cd!J

1
Vceq

0

,d
H S 1

2,d
s2

1

xd
sdD1

2a21

xd
~c2cd!J .

~E10!

For small perturbations of the stepszn(x,t), the discontinu-
ous model is linearized. The Fourier transform of the pert
bationz is defined as

zvkw5E dtE dx(
n

e2 i (vt1kx1nw)zn~x,t !. ~E11!

Going to Fourier space and using the discontinuous mode
first order inz, a relation is found betweenv, k, andw. This
is the dispersion relation
4-18
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iv

D

D
2

52H 2Ld

d
~p2pd!1L2qJ ueq

0 Gk21H S iv

D
1

1

xs
2D @~12a!u011au02#2

VF

D
2

1

d
~]zu012]zu02!J F 1

2,d
q2LdqdG

1H S iv

D
1

1

xs
2D @2~12a!u011au02#2

VF

D
~2a21!1

1

d
~]zu011]zu02!J Ld@p2pd#

1H S iv

D
1

1

xs
2D ~u012u02!S 1

d
1

2a21

,d
D1@a]zu011~12a!]zu02#L2J q1H S iv

D
1

1

xs
2D ~u012u02!J Ldpd ,

~E12!
the

this
are
where we have defined

D
2

5Ldp1S 1

d
1dL21

2a21

2,d
Dq1

2dLd

d0
~p2pd!,

~E13!

and

L5S iv

D
1k21

1

xs
2D 1/2

, ~E14!

Ld5S 1

4,d
2

1L2D 1/2

, ~E15!

q5sinh~Ld, !, ~E16!

p5cosh~Ld, !, ~E17!
R

,

C

P.

.M

02160
qd5sinh~ iw1,/2,d!, ~E18!

pd5cosh~ iw1,/2,d!, ~E19!

and the zeroth-order gradients at the steps are related to
concentration via

]zu015a
u012ueq
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u012u02
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2

u01

,d
, ~E20!

]zu0252~12a!
u022ueq

d
1

u012u02

d0
2

u02

,d
.

~E21!

Note that, although the notations are not well adapted to
case, the steady step velocity and the dispersion relation
perfectly well defined in the limitt→`.
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